
Version 6.x

Language

English

Contents

● Introduction

● Purchase Information

● Getting Started

● Basics

● Tasks

● Variables

● Tutorials

● NT Service Module

● Command Line Module

● User Case Studies

● Performance and Reliability Testing

Introduction

This software is designed to automatically execute tasks. The software can be run on windows,
macintosh, linux, and on other operating systems.

Tasks can be scheduled on a daily, weekly, monthly, or hourly basis. Tasks can also be scheduled by the
minute, or second. Tasks include local and internet applications, file download and monitoring.

This software is available on a 30 day free trial basis. You can test it during this period. After 30 days,
the software expires, and you will need to register the software. If you do not want to use the software,
you can uninstall it from your computer. The uninstall procedure will depend on the operating system.
Typically, an uninstall program is also loaded onto your computer. Please see your help file for uninstall
instructions.

If you need to use this software for more than 30 days, please register it. You can purchase online by
credit card, check, money order, or purchase order. Multiple copy discounts, and site licenses are
available. See the Hitek Software web page, at "http://www.hiteksoftware.com" for details.

Purchase Information

|

When you purchase this software, you will receive registration instructions via email. Follow the
registration instructions very carefully, to receive the registration key. The registration key is required to
unlock the software.

Please visit our web site at 'http://www.hiteksoftware.com', for latest purchasing details and pricing
information. You can purchase, using one of the following methods:
1. Credit Card online. The registration instructions are automatically sent to you via Email.
2. Phone in or fax your order. Please see our web site for details
3. Send a check or money order. Please see our web site for details.
4. Purchase Order. Processing fees will apply for purchase orders.

Multiple copy discounts and site licenses are available. See the Hitek Software web site at 'http://www.
hiteksoftware.com' for details.

Getting Started

Creating a new task
From the front panel, select the 'Tasks' menu.
From the pull down menu, select the 'Administrative' menu. Then select the 'Archive Logs' menu item.
This task archives the programs output and activity logs.
Enter a Title for this 'Archive Logs' task. Select a local directory to archive the logs.
Click on the 'Save' button. The task will appear in the 'All Tasks' table.

Running a task

Select the task in the 'All Tasks' table, and click the 'Run' button.
The task will be run by the Scheduler Engine.
Click on the Logs menu of the front panel. Then click on the 'Output Log' menu item. You will see the
output from the Archive Logs task.

Scheduling a task

Select the task in the 'All Tasks' table, and hit the 'Schedule' button.
The scheduler box will pop up. Set the schedule type as 'Minute'.
Hit 'Save' to save this schedule. The task will appear in the 'Scheduled Tasks' table.
Wait for a minute, and the 'Archive Logs' task will run again. This task will run every minute. In the
output log viewer, click the Refresh Button, to view the latest Run output.
You can stop the schedule, by disabling the 'Run' check box, in the first column of the 'Scheduled Tasks'
table.

Editing a task

To edit your task, select the task in the 'All Tasks' table, and click the 'Edit' button. You can change
your task parameters, and hit 'Save' again. The original task data will be updated.

Editing a task schedule

To edit your task, select the task in the 'Scheduled Tasks' table, and click the 'Edit' button. You can
change your schedule parameters, and click the 'Save' button. The original schedule data will be
updated.

Deleting a task

To delete the task, select the task in the 'All Tasks' table, and click the 'Delete' button.

Deleting a task schedule
To delete the schedule for a task, select the task in the 'Scheduled Tasks' table, and click the 'Delete'

button.

Basics

● Getting Started
● Using Help
● Front Panel
● Task Table
● Schedule Table
● Scheduling Tasks
● Exit Codes
● Log Files
● Append to Filename
● Filename Filter
● Scheduler Settings
● Unix Service

Tasks

Below is a list of tasks, which are supported by the 6.x family of Hitek Software products. Please note
that all tasks listed below may not be available in your program. For example, the Command task is
available in Automize 6.x, but not in AbleFtp 6.x.

Archive Logs Auto Backup Bulk Email

Command Chains Copy Files

Check Email Database SQL Directory Change

DeleteFiles Database Test Directory Monitor

Email Email Logs File Monitor

Ftp Ftp Commands FtpMonitor

File Variable LogFile monitor Maintenance

Ping Print Files Synchronize

TextSearch Telnet Telnet(Adv)

Unzip Archive Url Monitor Variable Monitor

Web Downloads WinCommand ZipDirectories

Variables

This software supports variables using two techniques:

1) Many fields supporting variables: The value of these variables is resolved when the task runs. The

fields, which support variables, are marked with . For example: to match files in a Filename field
based on current month of year, you would enter the filename as: $%DATE::mm-yy%$. If the current
month was June 2002, all files, which contain '06-02' in their name, would be selected.
2) Variable Monitor task: This task compares the value of the variable using a value, and a comparison
criteria you define. If a match is found, you can run other tasks.

Types of variables
Task Variables: Task variable values are generated/updated when the tasks run. Example: Tasks exit
codes are stored as the following variable: TaskTitle::EXITCODE
System Variables: System variables which are resolved when the current task runs, examples are
DATE, USERNAME etc..
Java Variables: Java variables, which are available to the Java Virtual Machine. You can get the value
of java variables from the 'Java Variables' menu item
User Variables: Users can add their own variables via batch files, scripts or programs. Users can link
output from their own programs, to this program.

Using variables in the text fields
The variable must be formatted as follow: $%VariableFormat%$

For System variables: $%VariableName::VariableOptions%$
Variable_Options may only be required by some Variables.
examples: $%DATE::hh:mm;yyyy%$ or $%USERNAME%$

For Task variables: $%TaskTitle::VariableName%$
examples: for TaskTitle = Test : $%Test::ExitCode%$ or $%Test::ErrorMsg%$

For User and Java variables: $%Variable%$
examples: for java variable user.name, use : $%user.name%$

List of currently available variables
To view the list of currently available variables, click on the 'Variable Monitor' task dialog (via Tasks

menu / Monitors). The variables are listed in the Variable Name dropdown box. The variables are listed
in the following order:
1) System variables
2) Task and user variables
3) Java variables

Tutorials

● How To's

● Windows specific tutorials

NT Service Module 6.x - Please read this entire file carefully

The NT service module is an optional add-on. It requires a separate download and purchase. Please visit our
website to download the NT service module. This module can only be used with version 6.0 or later. The NT
service module launches the Scheduler Engine, if it is shut down. When a user logs out, the scheduler engine
will shut down. The NT service module will restart the engine after logout, and periodically verify that the
engine is always running. This module will also launch the engine on startup, if the Service Startup Type is
set to Automatic (default).

Getting Started
Service Control Summary
Recommended settings in Service Control Manager

Getting Started
1. Install the NT service using the Service menu, from the module front panel. The NT Service Module
window does not need to be kept open. You will only use the module, to register the software, change
settings, or remove the service.
2. Go to the Windows Service Control Manager, via the Control Panel. Set the logon properties for the NT
Service, as shown in the Recommended Settings table below. Start the NT Service.

Notes:
1. For version 6.x+, the default scheduler engine Port = 1965. DO NOT change this value, unless you have
also changed the engine port value, in the software also. The port value in the NT service module, should
match the port value in the user interface.
2. The Period is the time interval in minutes, which the NT service module, will check that the engine is
running. The default is 5 minutes. When a user logs out, the scheduler engine will shut down. The
Service will then re-launch the engine within the Period set (default = 5 minutes).
3. If you change the Port value, or the Period value, from the NT Service module, the Service needs to be
restarted, from the Service Control Manager.

Service Control Summary

Install Service Use NT Service Module

Remove Service Use NT Service Module

Start Service Use Service Control Manager (from control panel)

Stop Service Use Service Control Manager (from control panel)

Change Port or Period settings Use NT Service Module

Register Software (unlock software) Use NT Service Module

Recommended settings in Service Control Manager

Account

User Account - You must enter your username/password and have administrative
privileges.

If you do not satisfy the above conditions, you will get the following error: Service did not
startup or respond in a timely manner.

Interact with
desktop

NO (unchecked)

Startup Type Automatic (default)

Command Line Module

Introduction

Using the Command Line Module

Command Reference

Adding/Modifying Tasks

List of parameters for each task type

Adding/Modifying Schedules

Installing Software to a remote System

Using Ftp to set/view remote data

Managing remote scheduler(s)

Programmatically controlling the scheduler

Case Studies

These are actual examples of how users are using our software. We obtain this information when users
request technical support. You can learn valuable tips by going through these examples. Note that some
of these examples only apply to Automize and not other programs (i.e. AbleFtp or JaSFtp etc..)

Scheduling a task to run on the first Monday of the month

Monitoring a website/server - receive alert when server is down

Monitoring a website/server using reference - receive alert when server is down

Monitor a log file for alerts and receive immediate cell phone notification

Monitoring log files for errors / exit codes

Detect errors in telnet tasks using variable monitor

Save results of a telnet command to local file

Daemon to monitor directory for changes and run file processing program

File Monitor task to monitor directory for total accumulated files

Run task if file exists in a directory, else send an email

Dynamically download URLs that are specified in a text file

Delete files from Ftp server directory that are older than 30 days

When new files come into folder, send email and attach these files

Monitor email server: ensure it is processing incoming and outgoing emails

Backup a file and receive email notification of success/failure

Zip each file in a folder into its own archive

Download webpages and append them to master file

Reliability and Performance Tests - version 6.x

General
Automize is now 100% java and uses Suns Java 1.3 machine. If it runs on one system, it should
supposedly run on all systems. The java machine is tested rigorously on all released platforms by Sun
Microsystems Java team. However, we rigorously test all versions of Automize on the following
platforms:
1) Windows (both 95 and NT families, including servers)
2) MacOSX,
3) Linux Redhat

We also provide some releases for other Java 1.3 enabled platforms. We cannot test on all other Java
1.3 platforms, however, since we confirm that it runs perfectly on windows, mac, and linux, we are very
confident that it will run on all other java 1.3 platforms.

Debug Log
This is one of the extremely rare software programs that exposes bugs to the users via the Debug Log.
The debug log is the single most important information we use to figure out why your tasks fails (either
user input error, system or other error or bug). We constantly refine our code when we go through your
debug logs. 100% of our code is in error catching loops that write to the debug log. This has helped the
program to be extremely stable. By version 5.x, we have cleaned up a lot bugs, from information that
filtered into the users 5.x debug log.

Scheduler engine CPU usage
The scheduler engine just sets timers for your tasks. Every task has one timer associated with it.
Typically when no tasks are running, the scheduler engine will consume almost very little (~0%) of CPU
time. When the task is triggered, the CPU usage will depend on the task.

Scheduler reliability testing
Conditions: Ultra1, Solaris 8.0, 256MB Ram, 166MHz, 2 Tasks (copy & delete) run every 15 seconds
for 1 month.
Results: RAM usage plateaus at 60-80 MB during the entire month. CPU usage ~2-5%

Zip Task
Conditions: Win2000, 256MB Ram, 667 MHz, Source folder size = ~1.8 GB, Source files zipped =
20031
Results: Zip time = ~24 minutes, Zip file size = ~1.3GB, Average CPU =~70-90%
Output:
May 17, 2002 1:23:49 PM
Zip Directories - Zip

Zip session summary:
Number of files in directory = 20031
Number of files passing filename filter = 20031
Number of files passing date modified criteria = 20031
Number of files zipped = 20031
Zip file created : C:\Documents and Settings\melvin\junk\Zip.zip
File Size = 1325729962 bytes

May 17, 2002 1:23:50 PM
Zip Directories - Zip - Exit Code = 0

Copy Task
Conditions: Win2000, 256MB Ram, 667 MHz, Source folder size = ~150 MB, Source files copied =
5667, Subfolders = 419
Results: Copy time = ~5 minutes, Average CPU =~20-40%.
Output:
May 17, 2002 2:00:10 PM
Copy Files - Copy
Copy session summary:
Number of files in directory = 5667
Number of files passing filename filter = 5667
Number of files passing date modified criteria = 5667
Number of older source files copied (only if 'Ignore file timestamp' option is selected) = 0
Number of source files older than target files (i.e. not copied) = 0
Number of files copied = 5667

May 17, 2002 2:00:11 PM
Copy Files - Copy - Exit Code = 0

Ftp Task
Conditions: Client Win2000, 256MB Ram, 667 MHz. Ftp Server = Solaris Sparc 8.0, 10 Mbps
network speed.
Ftp task: Source folder size = 150 MB, Source files transferred = 5642, Subfolders = 419, log transfer
or backup options were NOT selected.
Results:
Ftp Get time = ~40 minutes, client CPU usage = varies 5-20%.
Ftp Put time = ~60 minutes, client CPU usage = varies 20-100%.
The Ftp transfer time and %CPU usage will be higher if the log transfer or backup options are selected.
Output:
May 17, 2002 5:58:36 PM
FTP session summary:
Total files = 5642
Files meeting filename criteria (C1) = 5642

Files meeting transfer criteria per date modified & criteria C1 (C2) = 5642
Files meeting transfer criteria based on new modified files & criteria C2 = 5642
Total files downloaded = 5642

May 17, 2002 5:58:37 PM
Ftp - Ftpget - Exit Code = 0

Using Help

There are three options to view the Help file.
1) Default java help system. Includes full text search and context sensitive help.
2) View HTML help using software browser.
3) View HTML help in native browser.

You can set the default Help system in the Settings menu of the software. You can view the latest online
version of this help file, by visiting our web site. You can also access the online help, via the Help menu
in the front panel.

Front Panel

Table Description
The front panel contains the All Tasks and Scheduled Tasks tables. The All Tasks table contains all the
data for each task that you create. The Scheduled Tasks table contains scheduling data, for the tasks that
have been scheduled to run. Each table has an associated toolbar with buttons, which are described in
the sections All Tasks and Scheduled Tasks.

Run Software in the Background
In the right top part of the panel next to the clock, is the Program icon. Click this button, and the user
interface will run in the background. The icon will appear on your desktop. Clicking on the icon on
your desktop, will open the Front Panel again. You can set the icon to appear at various portions of your
screen, by using the "Options" menu , "Icon Location" menu item.

Chain Tasks
Use this button to create a new chain task. Chain tasks can run other tasks in sequence.

Start/Stop Scheduler
If the button is green, the scheduler engine is running. If the button is red, the scheduler is shutdown.
This button allows you to start the scheduler engine, or to shutdown the scheduler engine.

Status Bar
At the bottom of the panel is a status bar, which provides information regarding user input.

Task Table

The Tasks table contains all the data for each task. There are 50 parameter columns allowed for each
task. Each task may use up only a few of these columns.

You can edit the task using the Edit button. This will load the parameters into the task dialog box
correctly, and you can edit the settings there.

To run a task, select the task in the Tasks table, and click the "Run" button.

To schedule a task, select the task in the Tasks table, and click the "Schedule" button.

To edit a task, select the task in the Tasks table, and click the "Edit" button.

To delete a task, select the task in the Tasks table, and click the "Delete" button.

To duplicate a task, select the task in the Tasks table, and click the "Copy" button.

Schedule Table

The "Scheduled Tasks" table contains the data for all the scheduled tasks. You can edit the schedule,
using the Edit button. This will load the parameters correctly into the schedule dialog box. You can edit
the schedule settings, in the schedule dialog box.

To edit a task schedule, select the task in the "Scheduled Tasks" table, and hit the "Edit" button.

To delete a task schedule, select the task in the "Scheduled Tasks" table, and hit the "Delete" button.

To run a task, select the task in the "Scheduled Tasks" table, and hit the "Run" button..

This button resets the next run times for all tasks. This is useful, if some of your tasks have failed
with fatal errors, and the engine has stopped scheduling them. After fixing your tasks, click this button
to reschedule all tasks. The schedule table will be updated after 5 seconds.

This button updates the Next Run column. The Next Run column has to be manually updated by
the user.

The "Run" column allows you to enable or disable a task schedule.

The "Frequency", "Period", "Hour", "Minute", and "Details" columns display the scheduling
parameters that have been set for this task.

Scheduling Tasks

Tasks can be scheduled by the second, minute, hour, day, week, or month. To schedule a task, select an

existing task from the Task table, and click on the schedule button.

Scheduling by the Second
Tasks can be scheduled by the second. i.e. every x = 15 seconds etc. Scheduling tasks at this rate, is
very likely to consume a large amount of your computer's time and resources. When you schedule by
the second, the task will run every x seconds, from the time the task was created. If you restart the
scheduler, the task will run first after x seconds, and then repeat every x seconds.
When scheduling by the Second, the following fields are used: Run Hours, Run Days.
When scheduling by the Second, the following fields are ignored: Run Months, Run Dates, Run Weeks.

Scheduling by the Minute
When you schedule by the minute, two rules apply:
1. If you schedule every 1, 2, 3, 4, 5, 6, 10, 12, 15, 20 or 30 minutes (i.e. divisible by 60), then the task
will run at the same time each hour. Example, if you schedule a task to run every 15 minutes, and you
set the run 'minute' = 0, it will run at 0, 15, 30 and 45. If you set the run 'minute' = 5, it will run at 5, 20,
35 and 50.
2. If the period is not divisible by 60, the task will run every x minutes. If you restart the scheduler, the
task will run first after x minutes, and then repeat every x minutes.
When scheduling by the Minute, the following fields are used: Run Hours, Run Days.
When scheduling by the Minute, the following fields are ignored: Run Months, Run Dates, Run Weeks.

Scheduling by the Hour
When you schedule by the hour, two rules apply:
1. If you schedule every 1, 2, 3, 4, 6, 8,12, or 24 hours (i.e. divisible by 24), then the task will run at the
same time each day. Example, if you schedule a task to run every 6 hours, and you set the run 'minute' =
0, it will run at 12AM, 6AM, 12PM, 6PM everyday.
2. If the period is not divisible by 24, the task will run every x hours. If you restart the scheduler, the
task will run first after x hours, and then repeat every x hours, at the minute of the hour you set.
When scheduling by the Hour, the following fields are used: Run Hours, Run Days.
When scheduling by the Hour, the following fields are ignored: Run Months, Run Dates, Run Weeks.

Scheduling by the Day
When you schedule by the day, the task will run on the days selected, at the exact time of the day you
set.
When scheduling by the Day, the following fields are used: Run Days, Run Weeks.
When scheduling by the Day, the following fields are ignored: Run Hours, Run Months, Run Dates.

Scheduling by the Week
When you schedule by the week, the task will run every week, on the day selected, and at time of the
day you set.
When scheduling by the Week, the following fields are used: Run Days, Run Weeks.
When scheduling by the Week, the following fields are ignored: Run Hours, Run Months, Run Dates.

Scheduling by the Month
When you schedule by the month, the task will run for the months that you have selected. The task will
run, on the date of the month, and the time of the day you set. If you require the task to run, on the last
day of the month, select the date as "32".
When scheduling by the Month, the following fields are used: Run Months, Run Dates.
When scheduling by the Month, the following fields are ignored: Run Hours, Run Days, and Run
Weeks.

Start Date
This field is a Start Date filter. If the calculated next run time, is prior to the Start Date, the next run
time is incremented, till it is after the Start Date. This time does not indicate the first run time.

End Date
This field is an End Date filter. If the calculated next run time, is past the End Date, the scheduled is
Cancelled. This time does not indicate the Last run time.

Exit Codes

The program attempts to obtain exit codes for your tasks. If it fails to show an exit code, and your task fails, please view the task and
output logs, as well as the debug log from the Log menu.

If a task exits normally, without generating any error, Exit Code = 0. For many tasks, which involve monitors or file downloads, the Exit
Code = -100 or -101, if the tasks monitoring or download criteria are met.

Task Type Error description

CopyFile

EC = 1, File copy failed, or delete failed after rename/move options
EC = 2, Invalid target directory
EC = 3, Invalid source directory
EC = 100, Invalid task data format

PrintFile EC=0 always. No Exit codes provided. Please view output log for error information.

DeleteFile
EC = 1, File delete failed
EC = 2, Invalid local directory
EC = 100, Invalid task data format

Text Search

EC = -100, no error, search string(s) found in file(s)
EC = 0, no error, search string(s) NOT found in file(s)
EC = 1, task failed, no other details, check logs
EC = 2, Invalid results directory
EC = 3, Invalid source directory
EC = 4, Error occurred while reading source file
EC = 5, Error occurred while writing to results file
EC = 100, Invalid task data format

Command

EC != 0 , System/program generated
EC = 100, Invalid task data format
EC = 101, Unknown (check log)
EC = 200, Wait time exceeded

WinCommand

EC != 0 , System/program generated
EC = 1, WinCommand.exe Failed to start process
EC = 2, process did not allow WinCommand.exe to wait on it
EC = 3, process abandoned without providing feedback
EC = 10, could not open or access WinCommand.exe input data file
EC = 100, Invalid task data format
EC = 101, Unknown (check log)
EC = 258, Wait time exceeded

Ftp

EC = -100, no error, file changes were detected, files were transferred
EC = 0, no error, no file changes were detected, no files were transferred
EC = 1, Failed to transfer/delete file(s)
EC = 2, Failed to connect to server
EC = 3, Invalid user/password
EC = 4, Invalid remote directory
EC = 5, Failed to set Binary
EC = 10, Invalid local directory
EC = 100, Invalid task data format

Ping

EC = 0, no error, connection accepted
EC = 1, connection denied or timed out
EC = 5, ping not attempted, time since last Ping < 5 minutes.
EC = 100, Invalid task data format

Telnet
No exit code information except connection status.
EC = 0, connected successfully
EC = 1, failed to connect

Telnet(Adv)
No exit code information except connection status.
EC = 0, connected successfully
EC = 1, failed to connect

Email
EC = 1, Email failed, check debug and/or output logs
EC = 100, Invalid task data format

Bulk Email
EC = 1, Task failed, check debug and/or output logs
EC = 100, Invalid task data format

Check Email

EC = -100, no errors, messages were downloaded to the mail folder
EC = 0, no error, no messages satisfied conditions for downloading
EC = 1, Task failed, check debug and/or output logs
EC = 2, Failed to connect to email server
EC = 3, Failed to open the default INBOX folder
EC = 4, Failed to obtain a list of messages in your INBOX folder
EC = 100, Invalid task data format

Web
EC = 1, Download failed
EC = 100, Invalid task data format

Url Monitor

EC = 0, no error, no files downloaded
EC = 1, no files downloaded, errors detected
EC = 100, Invalid task data format
EC = 105, Failed to create sub directory
EC = -100, no error, Url change(s) detected, file(s) downloaded
EC = -101, Url change(s) detected, file(s) downloaded. Some error(s) detected, but these errors are generally due to
task trying to download invalid protocol files or directory listings.

Database

EC = -100, no error, database change detected during Select statement
EC = 0, no error, database change was NOT detected during Select
EC = 1, failed to connect to Database
EC = 2, SQL exception
EC = 3, other exception within SQL loop
EC = 4, error writing select statement data to file
EC = 100, Invalid task data format

Dir Change

EC = -100, no error, Dir/File change was detected
EC = 0, no error, Dir/File change was NOT detected
EC = 2, Invalid Dir/file
EC = 201, Other unknown error (check log)

File Monitor

EC = -100, no error, Dir/File change was detected
EC = 0, no error, Dir/File change was NOT detected
EC = 3, Invalid Dir/file
EC = 1, Other unknown error (check log)
EC = 100, Invalid task data format

Dir Monitor

EC = -100, no error, Dir/File change was detected
EC = 0, no error, Dir/File change was NOT detected
EC = 2, Invalid Dir/file
EC = 201, Other unknown error (check log)

Variable
Monitor

EC = -100, no error, Variable comparison criteria was met
EC = 0, no error, Variable comparison criteria was NOT met
EC = 2, Variable Name was not found in the users variables file (..Automize/userVariables) or in default java system
variables.
EC = 201, Other unknown error (check log)

Chain

Task EC = 102, Task wait time exceeded
Chain EC = step at which failed, Chain failed
Chain EC = 100, Invalid task data format
Chain EC = 101, Task not found in Task Table

Ftp Monitor

EC = -100, no error, file changes were detected
EC = 0, no error, no file changes were detected
EC = 1, Error detected, see output log for details
EC = 2, Failed to connect to server
EC = 3, Invalid user/password
EC = 4, Invalid remote directory
EC = 100, Invalid task data format

Ftp Command

EC = 0, no error
EC = 1, see output log for details
EC = 4, invalid custom command
EC = 100, Invalid task data format

Zip File

EC = 1, File copy failed, no other information, check logs
EC = 2, Invalid target directory for zip file
EC = 3, Invalid source directory
EC = 100, Invalid task data format

Log Files

Task data is logged into log files on your disk. The logs are available via the Logs menu. The log files
are automatically trimmed back to 0%, 25%, or 50%, when they exceed the maximum size limit set by
user.

Output log
This is the most used log. This log displays any output from your tasks. The data includes run times,
any output data, and error data and exit codes and end times.

Debug log
Our software is one of the extremely rare software programs, that can expose bugs to the users via the
Debug Log. This log displays any error from your tasks, and the exact location in our program code,
where this error occurred. This log provides the most important information, and helps us quickly
determine the cause of your task error. We can deterimine if it is a user input problem, system or other
problem, or a bug. Almost ~100% of our code is in error catching blocks. We keep refining our code,
when we analyze your debug log. This has helped the program to be extremely stable.

Activity log
This log displays a list of tasks run times, and startup, and shutdown times.

Task logs
Each individual task that you create, will output data into task log files. The log files have the same
name as the task title. The data that is displayed in these logs include run times, any output data, error
data, and exit codes.

Filename Format for Append To Filename option

Many of the tasks have the 'Append to filename' option. You can append Date/Time to the filename.
You can also add your own Custom Text to your filename. You can also set the format that you want
the Date/Time. Use the options indicated below, in Settings Menu / FilenameFormat dialog.

Appending Custom Text to your filename:
You can add your own Custom Text to your filename, according to the rules below:
1) Text will add 'Text' to the end of the filename (after extension).
2) P1::Text will add 'Text' before the filename
3) P2::Text will add 'Text' before the extension
4) P3::Text will add 'Text' at the end (after extension if an extension exists)
5) P4:: will add the Date to filename (before extension if an extension exists)
6) P5:: will add the Date/Time to filename (before extension if an extension exists)
7) You can add multiple Text to your filename using + after each rule used
8) You can also enter task or system variables to be added to the filename, except for the P4:: & P5::
formats, which already add the date or date/time.

IMPORTANT: P1:: , P2:: etc., should be entered exactly as shown (case sensitive)
Examples:

Filename Custom String Entered Resulting Filename

test.txt -java-$%DATE::ppddyy%$ test.txt-java-012704

test.txt P1::pre_ pre_test.txt

test.txt P2::_beforeExt test_beforeExt.txt

test.txt P2::_$%DATE::ppddyy%$ test_012704.txt

test.txt P3::_afterExt-$%DATE::ppddyy%$ test.txt_afterExt-012704

test.txt P2::_beforeExt_+P4:: test_beforeExt_01-27-04.txt

test.txt P1::pre_+P5:: pre_test01-27-04_12:32.txt

Appending Date or Date/Time
If you select 'Date', the current date is appended to the filename. If you select 'Date/Time', the current
date and time is appended to the filename. This is useful for archiving purposes. The date and month
are always 2 digit numbers. If time is appended, the hour and minute are always 2 digit numbers.
The standard date time separators like / or : are not used. These separators cannot be used in pathnames
or filenames, on some operating systems. Hence we chose -, _ , or none as the separators.

Date Format Sequence:
This allows you to select the sequence of date, month, and year.

Year Format:
You can set a 2 or 4 digit year, or choose not to have the year appended to your filename.

Date Time Separator:
This sets the separator between the date and time parts, if the 'Date/Time' 'Append to Filename' option is
selected.

Date Component Separator:
This sets the separator between the date, month and year.

Time Component Separator:
This sets the separator between the hour and the minute fields, and between the minute and the second
fields.

Include Seconds:
Select this option to append the second's field to the time.

Filename Selection

We provide a custom wildcard system. This system provides more flexibility than either the DOS or
Unix wildcard systems. You can select multiple files from a directory using the following rules:
1) Multiple sets of filenames can be selected using ^.
2) Each filename can contain 1 or more string tokens, separated by *.
3) Each * also stands for one character (or more).
4) Filenames containing all individual tokens entered, in the correct sequence, will be selected.
5) The index of an individual token in the filename selected cannot be less than the index of that token in
the filename entered.
6) The length of the filename selected, should always equal or exceed, the length of the filename entered.
7) If * (or multiple *) is at the end, it is ignored. However, the length of the filename selected, will
equal or exceed, the length of the filename entered.
8) For exact filename search, use # at start of filename. This ensures only one file with the exact name,
will be selected.
9) To exclude filename(s), use ! at the start of filename. The exclusion filename should be followed by
at least one other token separated by ^. The exclusion filename(s) should also be listed before any
normal filename. Examples: !.zip^* or !.zip^.txt or !.txt,!.zip,.htm,.gif

Consider a directory with the following files:
junk, test, temp, temp1, temp.txt, temp.htm, Test, Temp.txt, teeempju.txt, activityLog.txt, debugLog.txt,
test.zip, test.gif

Filename entered Files Selected
 All files selected

* All files selected

te test, temp, temp1, temp.txt, temp.htm,teeempju.txt

ju junk,teeempju.txt

T Test, Temp.txt

.txt temp.txt, Temp.txt, teeempju.txt, activityLog.txt, debugLog.txt

te*htm temp.htm

te*emp teeemp.txt

te*htm^debug temp.htm, debugLog.txt

te*htm^te*emp^debug temp.htm, teeemp.txt, debugLog.txt

temp*.txt No files selected (temp.txt is not selected per rule 5)

*********** teeempju.txt, activityLog.txt, debugLog.txt (per rule 6)

est** No files selected (test, Test are not selected per rule 6)

est* test, Test (per rule 6 and 7)

#temp temp (per rule 8)

!.zip^* All files except test.zip (per rule 9)

!.txt^temp temp,temp1,temp.htm (per rule 9)

Scheduler Settings

Engine server port
The software contains two separate programs. An administrator user interface, and a scheduler engine
program, which runs in the background. The administrator user interface sends data to the Scheduler
Engine Server Socket, which is listening by default on port 1965. It is very unlikely that you will need
to change this default port value. This default value will need to be changed, ONLY if another server is
running on your system, and is listening on this port. If you change the default port value, BOTH the
administrator user interface, and scheduler engine program need to be restarted. This Scheduler engine
running in the background, allows for use as Service on Unix, Linux, Solaris, Windows NT , 2000, XP.
Using Sockets to communicate, allows for future use of a Remote Administrator, to control the
scheduler engine.

Launch wait time
This is the maximum time in seconds, that the user interface waits, for the Scheduler engine to respond
on startup. If your system is slow, or you have many tasks and schedules, the scheduler engine may take
longer than the default (60 seconds) to startup. In this case, you may get a message saying that the
scheduler engine has failed to startup. In reality, the scheduler engine may have started, but only after 60
+ seconds. If you receive this message often, then increase this setting to 120 seconds.

Scheduler sleep time (ms)
Every time a schedule is triggered, the scheduler will set the next schedule and run the task. Beginning
in version 5.4_3, you can set the scheduler to wait for a few milliseconds (1000 milliseconds = 1
second), before setting the next schedule. This helps to prevent multiple triggers, on some older
systems. These older systems may return faulty values of the current time. In versions 5.0 - 5.4_2, this
value was fixed at 1 millisecond. Starting in version 5.4_3, this value can be set by the user. The
default is now 100 milliseconds, but you can choose to set it between 0-60000 milliseconds (0-60
second). If you set a sleep time of 5000 milliseconds (5 seconds), the task will start running 5 seconds
after the schedule is triggered.

Time Zone
The scheduler engine automatically detects the system time zone settings, indicated by the 'default'
value. If your schedules are 1 hour off, you may have to reset the time zone to the correct value.

Thread Priority
All tasks are multithreaded in version 6.x. Every task runs as a separate thread in the engine. You can set
the thread priority to be minimum, normal, or maximum. It is recommended that you use either
minimum or normal (default) priority. Maximum priority is NOT recommended.

Check for multiple triggers within 30 seconds
In version 5.x, two users had reported multiple task instances (2-6 instances), being triggered at the same
time. The cause of this multiple triggers is unknown. Select this option, if you happen to suffer from this
multiple trigger problem. This option does not apply, when the scheduling period is by 'Second'. If you
select this option, and two instances of the same task are triggered within 30 seconds of each other, then
the second instance is cancelled.

Scheduling Error
In version 5.x and earlier, when a scheduling error occurred, the task schedule was cancelled, and then
rescheduled. In 6.x, more corrective options are provided.
1) No corrective action is taken.
2) Reschedule only the task schedule, that led to the error.
3) Reschedule all the task schedules.
4) Restart the scheduler engine. In this case, all pending schedules are cancelled, and a new instance of
the scheduler engine is launched. However, if any task is still running in the current instance of the
engine, it will continue to run. The current instance of the engine will shut down, after all running tasks
have finished, or when the maximum wait time (default = 60 minutes) is reached.

Wait for tasks to Finish before Engine shuts down
When the engine is shut down, all pending schedules are cancelled. However, if any task is running in
the current instance of the engine, it will continue to run. The current instance of the engine will shut
down, after all running tasks have finished, or when the maximum wait time (default = 60 minutes) is
reached.

Maximum wait time before engine stops
When the engine is stopped, the current instance of the engine will shut down, after all running tasks
have finished, or when this maximum wait time (default = 60 minutes) is reached. You can change this
default value as required.

Unix Service

This software contains two separate programs. An administrator user interface, and a scheduler engine
program, which runs in the background. By default, the scheduler engine in the background, is not
started with the 'nohup' command. Hence, when you logout, the scheduler may shutdown. By using
the 'nohup' command to launch the scheduler engine, the scheduler engine will keep running after user
logout.

Restart engine using launch code
You can re-launch the engine using the 'Restart engine using launch code' button. This automatically
shuts down the current instance of scheduler engine. Then, the engine is restarted, using the new 'nohup'
code.

Recommended nohup launch code
The recommended command to launch the engine using 'nohup', is shown in the text box. You can edit
it as you wish.

Save code and always launch scheduler engine using this launch code
Select this checkbox, if you wish to always use nohup, to launch the scheduler engine.

Important Notes
1) If you are re-launching the scheduler engine, through a script or from a terminal, make sure that you
shut down the scheduler engine, through the user interface first.
2) If launching Engine from commandline/script, start dir should be software install folder. Please 'cd' to
the software install folder first.

Default Scheduler Engine Launch Code
If you used the install with JVM:
jre/bin/java -cp .:inputs:images:activation.jar:mail.jar:NetComponents.jar:jclasses.jar JSEngine
or if you used the install without JVM and java is in your path
java -cp .:inputs:images:activation.jar:mail.jar:NetComponents.jar:jclasses.jar JSEngine

Note: On some systems, like Linux Redhat 7.0, 'nohup' is not needed. The scheduler engine may keep
running on logout, even if launched without 'nohup'. On Solaris 8.0, the scheduler engine will shut
down if 'nohup' is not used.

Archive Logs

This administrative task allows you to archive the Output, Activity and all Tasklogs. To create an
Archive Log task, hit the Save button in the dialog box. An entry will be added into the 'All Tasks'
table. You can then schedule this task.

Target Directory
Enter the full path name of the directory, where you need to put the log files. Note that the path is case
sensitive on unix systems.

Place files in new subdirectory
If you select "None", no new subdirectory is created within the Target Directory.
If you select Date, a new subdirectory based on the date, is created within the Target Directory. All files
are placed in this directory.
If you select Date, a new subdirectory based on date and time, is created within the Target Directory. All
files are placed in this directory.

Append to Filename
To archive each log file, based on current time/date, choose the append file option.

 Auto Backup

This administrative task allows you to backup all the user settings, task table and schedule table data.
To create an Auto Backup task, hit the Save button in the dialog box. An entry will be added into the
'All Tasks' table. You can then schedule this task.

Target Directory
Enter the full path name of the backup directory. Note that the path is case sensitive on unix systems.

Place files in new subdirectory
If you select "None", no new subdirectory is created within the Target Directory.
If you select Date, a new subdirectory based on the date is created within the Target Directory. All files
are placed in this directory.
If you select Date, a new subdirectory based on date and time is created within the Target Directory. All
files are placed in this directory.

Bulk Email

The email task allows you to send email automatically to multiple recipients in sequence. This allows
you to hide the identity of recipients from each other. This also allows you to send email to a large
audience, without manually typing in the email addresses, using an email list file. You need to specify
the recipients in a text file. Each address has to be on a new line. To create a bulk email task, select the
"Create Task" menu and then the "Bulk Email" menu item.

Email Server Profile
Select the profile name for the email server you need to connect to. You should have previously created
an email profile, using the Email Profiles menu item.

Recipient list file and additional parameters for mail merge
Select the recipient list file. The file should contain the list of email addresses. One email address per
line. Additionally, if you wish to pass multiple parameters for each email address, enter them after the
email address separated by ^. Then in any field (subject, message body, headers or attachment paths)
you can specify a parameter using %%1, %%2 etc..
Example of Recipient list File:
rob@test.com^Rob Gibson^London^60
jane@test.com^Jane Doe^New York^90
In your email, you can access the Name using %%1
In your email, you can access the City using %%2
You can also access the recipient email address using %%0
Example Body:
Dear %%1, The temperature in %%2 is %%3 F. Your email address is %%0.
This would result in the following body sent to rob@test.com:
Dear Rob Gibson, The temperature in London is 60 F. Your email address is rob@test.com.

Subject
Enter the subject. This field also supports dynamic variables. For example, you could automatically
parse the current date or computer IP address into the subject

Delay
This is the time interval in seconds between successive emails. Normally a value between 5-60 seconds
should be used.

Message Body
1) Enter the message body directly into the text field
2) This field also supports dynamic variables. For example, you could automatically parse the current

date or computer name into the message
3) Or, You can let the software dynamically parse the message text from a file on your system using the
following format:
$$$[message_file_path]
for example on windows, if the message file is c:\data\message.txt, use:
$$$c:\data\message.txt

Adding Attachments
1) To add an attachment, type in the full path name of the file, into the Attachment Text Box. You can
also use the "Browse" button to select the file. The format for the attachments is: AbsoluteFilePath1,
AbsoluteFilePath2,......
Example: c:\data\test.txt,c:\temp\data.htm
2) You can also specify multiple filenames, in multiple directories, by using the following format:
[DIR]c:\your_dir[FILE]name_filter,...............
Enter the name_filter for the files you wish to transfer, using the following wildcard rules
Example: to attach all files that end with .txt from the c:\temp folder, use:
[DIR]c:\temp[FILE].txt
3) This field also supports dynamic variables.
Example:
To attach all files in the c:\temp folder, which has the current date (example: 06-21-02) in their
filename, use:
[DIR]c:\temp[FILE]$%DATE::pp-dd-yy%$
See dynamic variables for more details on formatting the date

 Headers
You can specify headers to add to the email. This will allow you to add mail priority, or other specific
flags. An email server can decide not to display all the headers you specify, or may not understand the
headers you specify. For example, if you attempt to specify Email priority level, an email server may
accept any, or all, or none of the following flags: X-Priority, X-MSMail-Priority, Importance, and
Priority.

To specify headers, use the following syntax:
header1=value1^header2=value2^header3=value3

Header Examples:
X-Priority=1^ Priority=Urgent
Importance=high
Reply-To=test@test.com

Command

This feature allows you to run executable programs. To run shell commands, batch/script files, you will
need to launch the appropriate shell as an executable. Then use the shell to run the command.

Command Line
Executables: If you want to simply launch an executable, browse to it, or enter it manually. Example:
c:\winnt\notepad.exe
If the path to your executable includes spaces, enter the path to the executable in quotes. Example:
"c:\program files\myexe.exe"
If you want to enter a commandline parameter, to pass to your executable, enter a space between the
path and the parameter. Leave spaces between any subsequent parameters. Example:
"c:\program files\myexe.exe" par1 par2

For Shell commands, and batch or script files: the syntax required vary depending on operating
systems. Examples of batch commands for Win 95/98, WinNT/2000pro, Unix, and Mac OS X are listed
at the end of this section.

This field also supports dynamic variables. For example, to launch a batch file, and pass it the current
time, use:
c:\data\test.bat $%DATE::hh:mm:ss%$

Working Directory
The working directory is required for your program, command or script, to run correctly. This is
particular true if the program or script uses relative paths to access and output to files.

Environment Variables
This is an array of strings, each element of which has environment variable settings in format
name=value. You should separate each name=value pair by a delimiter character. You can choose the
delimiter to separate each element. The default delimiter is ^. If any of your variable name=value pairs
contains the ^ character, then you should set another character as your delimiter. The delimiter cannot be
"=" or any other character that appears in your name=value pairs.
Example of correctly formatted environment variables on windows systems:
PATH=c:\test;c:\test2;c:\test3^TEMP=c:\temp

This field also supports dynamic variables. For example, to launch a batch file and set the variable
'CUSTOM_DATE', use:
CUSTOM_DATE=$%DATE::Qqq dd, YY HH:mm:ss am_pm%$
This will set the variable CUSTOM_DATE in the batch file to: Aug 21, 2002 10:21:23 AM etc..

Termination Time
The termination time is the maximum time that your program or script can run. The task will terminate
your program, if it is still running, after the maximum allowed time. Enter a value = 0, if you do not
want to terminate your program. In this case, the task will wait indefinitely, for your task to finish.

Polling interval
While your program or script is running, the task continuously polls your program/script. The task will
check if the program has completed. The task will obtain the Exit Code value, when your program exits.
You can select the polling interval (default = 15 seconds). The minimum interval is 1 second. We
recommend using 15 seconds.

Command line Examples

Win 95/98

1) Executable programs:
Command line = c:\windows\notepad.exe
Working Directory = c:\windows

2) Batch files (uses command.com, located usually in c:\windows or in c:\)
Command line = c:\windows\command.com /c c:\test\test.bat
Working Directory = c:\test

NOTE: you can also try and run batch files, just like an executable, depending on your system setup.
Command line = c:\test\test.bat

3) Shell commands (uses command.com, located usually in c:\windows or in c:\)
Command line = c:\windows\command.com /c set c:\test\set.txt
Working Directory = c:\windows
(this example will output all your environment variables to the file set.txt)

WinNT/2000pro

1) Executable programs:
Command line = c:\winnt\notepad.exe
Working Directory = c:\winnt

2) Batch files (uses cmd.exe, located usually in c:\winnt or c:\winnt\system32)
Command line = c:\winnt\system32\cmd.exe /c c:\test\test.bat
Working Directory = c:\test

NOTE: you can also try and run batch files, just like an executable, depending on your system setup.
Command line = c:\test\test.bat

3) Shell commands (uses cmd.exe, located usually in c:\winnt or c:\winnt\system32)
Command line = c:\winnt\system32\cmd.exe /c set c:\test\set.txt
Working Directory = c:\winnt\system32
(this example will output all your environment variables to the file set.txt)

Unix (Solaris, Linux, MacosX or other)

To run shell commands or scripts, you will need to launch the appropriate shell as an executable. Then
use the shell to run the command.
Example to run the script 'myscript' from the /home/name directory, using the 'sh' command interpreter:
 Commandline = sh myscript
 Working Dir = /home/name

To see the options available to run your script, use man sh, man csh, or man bash.

Another option to run a shell script or command, is to use the Telnet Task. Using the Telnet task, login
to the local system, 'cd' to the desired director, using a first telnet command. Then run the shell script or
command, using a second telnet command.

Mac OS X

1. AppleScripts: Use the 'osascript' command to launch your AppleScripts
 Example:
 Commandline = /usr/bin/osascript /user/Name/YourScript.scpt
 Working Dir = /user/Name

2. Launch Applications or files: You can also use the 'open' command in MacOS X, to open a
document or application
 Example:
 Command Line = open Stickies.app
 Working Dir = /Applications

3. Commandline: To run shell commands or scripts, please see the section on Unix above.

Chains

This feature allows you to run multiple tasks in sequence. You can run programs, scripts, email, web,
ftp and most other tasks from the Chain. If a certain task fails, you can choose to stop the Chain. You
can also skip ahead to another task in the chain.

Creating a Chain

From the front panel click on the Chain button .

Adding Tasks to your Chain
The table on the upper right, displays the tasks you can add to your Chain.
Select the task you need to add and choose your task options.
Hit the "Add Task" button. Your task will be added to the table, on the bottom of the window.

Email Notification of tasks in the chain
By default, only the Chain itself can trigger email notification, based on exit code. The tasks in a chain,
do not trigger email notification, even if they satisfy an email notification profile. You should select this
option, in order to allow tasks in the chain to trigger email notification. The chain will move on to the
next step, only after the email notification has been completed.

Starting Chain at specified step
You can specify a step to start at, by entering the step number, or step title in this field. By default, the
chain will start at step 1, if this field is left blank.

Deleting Tasks from your Chain

Select the task in the bottom table and hit the delete button.

Editing Tasks in your Chain

Select the task in the bottom table and hit the edit button. The task parameters will be loaded into
the window. You can then make any changes you require and hit the "Update Task" button.

Positioning a Task within your Chain

Select the task in the bottom table and use the move up or move down buttons as required.

Enable Step
You can enable or disable a step. If a step is disabled, the task will move on to the next step.

Skip to Step options

You can choose to skip to certain step in the chain, if a certain exit code criteria is met. If you wish to
stop the chain, because a certain exit code criteria is met, enter a Skip to Step value, which is greater
than the total steps in the chain.

Skip to Step (or Title)
1) You can enter either the step number in the chain, or the task title. This has to be a valid task title in
the chain list.
2) You can also run multiple tasks simultaneously using the following rules:
a) Separate each Task Title by &. Example: TaskTitle1&TaskTitle2&TaskTitle3 (no spaces allowed)
b) You can only enter Task Titles, NOT step numbers.
c) TaskTitle1 has to be a valid Task Title in the chain list
d) TaskTitle1 CAN NOT be the last step in the chain list. You can add a dummy Echo task as the last
step in the chain, if TaskTitle1 happens to be your last step.
e) TaskTitle2, TaskTitle3 etc.. DO NOT have to be in the chain list. They have to be valid Tasks in the
main Task Table.
f) In this simultaneous mode, all tasks (TaskTitle2, TaskTitle3.. etc..) will be triggered simultaneously.
The chain will then continue normally at TaskTitle1.

Rerun Options
You can choose to rerun the task, if it meets certain exit code criteria. You can also set the maximum
number of times to rerun a task. The task will be rerun, while the rerun criteria is valid, until the
maximum rerun count has been met.

Maximum Wait Time
This is the maximum time (T1) the Chain will wait for your task to finish. Please note that the Chain
will not kill or terminate your task because it is unsafe to do so. It just waits for your task to complete
normally. If the task does not complete normally in the allotted time, the chain will assume that the task
has failed. The email, web, ftp and most other tasks will terminate normally.
For the DirChange and Command tasks, please ensure that you can Terminate the task within the Task
settings itself. Both these tasks have a safe Termination time (T2) that can be set within the task. Please
set T1 T2. If you have set the Command or DirChange task to rerun on failure, please set the T1 (T2
+Td)*n, where Td is the delay between reruns, and n is the number or reruns.

Why not just Kill a task when the wait time is exceeded
Short answer from us: In the chain, each task is run as a thread. Killing a thread is unsafe, and may
corrupt your system hours or days in the future.
Long answer from Java documentation: Because it is inherently unsafe. Stopping a thread causes it to
unlock all the monitors that were locked. (The monitors are unlocked as the Thread Death exception
propagates up the stack.) If any of the objects previously protected by these monitors were in an
inconsistent state, other threads may now view these objects in an inconsistent state. Such objects are
said to be damaged. When threads operate on damaged objects, arbitrary behavior can result. This
behavior may be subtle and difficult to detect, or it may be pronounced. Unlike other unchecked

exceptions, Thread Death kills threads silently; thus, the user has no warning that his program may be
corrupted. The corruption can manifest itself at any time after the actual damage occurs, even hours or
days in the future.

Copy Files

The CopyFile task allows you to copy file(s) from a directory or, an entire directory tree. The 'move' option
deletes the original files, after a successful copy operation. The 'rename' option renames the original file(s) to
the new name(s).

Source Directory
Enter the full path name of the directory where your source files exists. Note that the path is case sensitive
for unix Ftp servers.

Target Directory
Enter the full path name of the directory where you need to put the target files. Note that the path is case
sensitive on unix systems.

Filename
For the Copy and Move options only, enter the name filter for the files you wish to copy using the following
wildcard rules . This field also supports dynamic variables. Using dynamic variables, you can select a file
based on current date/time in addition to the normal wildcard search.
For the Rename option, the above wildcard options only apply for the file to pass the filename filter. If the
file passes the filename filter, then its newly renamed name will depend on the Rename Filename field.

Rename Filename
The rename filename field entry is dependent on the filename field entry.
1) You should specify matching tokens in the Filename and Rename Filename field.
2) Multiple tokens should be separated by ^ .
3) If the filename field has more tokens than the rename filename field, then the first token of the rename
filename field is used only.
4) If the rename filename field is blank, this option will act similar to the move option.

Consider the following files in folder = test.txt, temp.zip, temptest.txt

Filename field Rename Filename Field Rename results

.txt .doc test.doc, temptest.doc

.txt^.zip .doc^.jar test.doc, temp.jar, temptest.doc

temp^test bad bad.txt, bad.zip, badbad.txt

te bad badst.txt, badmp.zip, badmpbadst.txt

temp^test^.zip bad^.txt bad.txt, bad.bad, badbad.zip

.txt (left blank) test.txt, temptest.txt (same as move option)

Please note that, when using the rename option, some dynamic variables like $%....::Filenames%$, will give
unpredictable results. This is because, more than 1 filename is returned by this variable. i.e. There is no way
to match the filename tokens, with the rename filename tokens.

Place files in new subdirectory
If you select "None", no new subdirectory is created within the Target Directory.
If you select Date, a new subdirectory based on the date is created within the Target Directory. All files are
placed in this directory.
If you select Date, a new subdirectory based on date and time is created within the Target Directory. All files
are placed in this directory.

Include subdirectories
If you select this option, all subdirectories and files within the Source Directory are copied to the Target
Directory. If a subdirectory does not exist within the Target directory, then it is automatically created.

Append to Filename
If you are regularly coping a file and wish to save each copy to a different filename based on current time/
date, choose the append file option which best suits your copying frequency and file naming needs.

Date Filter
If you need to filter files based on file modified date, select this option. For the between option, enter 2 values
separated by '-' (2-4 etc..). Examples:
Older than 5 Minute, Newer than 2 Day, Between 3-5 Day, Between 1-4 Hour

Delete empty subfolders after Move
The move option first moves all files that meet the filename criteria, and other criteria. By default, empty
subfolders are not deleted, after all files are moved out. This is done by design. Many production systems
may need these empty subfolders to remain in place. This is for other processes, to move new files, into these
empty subfolders.
If you need to delete empty subfolders, after the Files have been moved, select this option. Please note that
all empty subfolders, in the source folder, will be deleted. This is true even, if there were no files in those
subfolders, at the start of the move option.

Check Email

This task allows you to download email messages, from your email server, to a user-specified folder.
Only messages within your INBOX folder are searched. You can specify conditions based on date,
sender or subject. Only messages that match your specified conditions, will be downloaded. Any
attachments are also downloaded.

Conditions
Condition 1 is required. Condition 2 is optional.
For date comparison, enter the number of days required. For example, to download all messages that
have been received in the last 3 days, enter 3 in the text box.
For conditions based on subject or sender, you have four choices. The comparisons are always case
sensitive.

and/or
Choose and, if both Condition l, and Condition 2 should be satisfied. Choose or, if either Condition 1,
or Condition 2 can be satisfied.

Email Folder
Please enter a valid folder path, on your local system. All emails will be downloaded to this folder. The
format of the email names is the name_x_ , where name is your Check Email task title, and x is the
message number that has been downloaded. For example, if your task title is "emailTest", and 3
messages were downloaded, the 3 email files will be emailTest_0_ , emailTest_1_ , and emailTest_2_ .
All attachments will also be downloaded to this folder, and will maintain their original names.

Append to filename
You can save downloaded messages and attachments, to a different filename, based on date, or date/
time, or custom code you set.

Email Server Type
Please consult your email service providers documentation, for information on your email server type.
POP3 is currently more popular. IMAP is the newer protocol, and many email servers will move to
IMAP in the future.

Email Server Name
This is the most difficult parameter to get right in this task. Please consult your network administrator,
or your internet service provider's documentation. Look for POP3, IMAP, or incoming email server
name. The exact name is required. The name is case sensitive. URL's are not allowed. If you use
email clients like Netscape, Outlook, Lotus, or Eudora, please copy this setting from the software itself.

Email Server Port
The default POP3 email port is usually 110.

Username
The username is case sensitive. No white space at the end.

Password
The password is case sensitive. No white space at the end.

Database SQL

You should test your database connection and SQL statements using the Database Test
utility, before you can make or schedule SQL tasks.

SQL statement
Enter your SQL statement here. It can be a select, insert, update, or delete statement. This field also
supports dynamic variables.

Directory to place Results
Enter the full path name of the directory where you need to put the SQL query results. Note that the
path is case sensitive on unix systems.

Results Filename
Enter the filename for query results. If no filename is entered, a default filename of your Task Title is
used. This field also supports dynamic variables. Using dynamic variables, you can save the file to a
customized name based on date/time or username etc...

Append to Filename
To save each query to a different filename, based on current time/date, choose an append file option.

Database JDBC driver
For your database, you need to obtain the JDBC driver from your database vendor or other 3rd party
vendor. Many of the database vendors have free JDBC drivers available at their web site. The JDBC
driver is generally in the form of a .zip or .jar file. You need to place the JDBC driver in the
following folder, depending on your installation method. Then restart the engine and
the user interface.
For installs including JVM : ...Automize/jre/lib/ext
For installs without JVM : ...jre/1.3/lib/ext or JDK1.3/jre/lib/ext etc.. depending on your system

Driver class name
Enter the class name for the driver. This information will be available in the driver documentation. For
Microsoft Access database, simply enter "access". Also, the JDBC driver required for MSAccess is
included within java itself.

Database Url
Enter the Url connection information. This information will be available with the Java JDBC driver
documentation.

The Url format will vary with vendor. The format includes the server name, port, database name,
username, and password.

Authorization
If your database requires authentication, then select this option and enter your username and password.

Username
Enter your username if required for database access. It is case sensitive.

Password
Enter your password if required for database access. It is case sensitive.

Directory Change

The Directory Change task monitor polls a single directory (or file) for changes. The Directory Change
task is multithreaded, and many Directory Change tasks can run simultaneously. The Directory Change
task can be used in three ways:
1) If a change is detected in this task, you can run another task and exit.
2) You can set this task to run as a daemon, which continuously polls the directory/file for changes, and
keeps triggering another task. This is very useful in production environments, where files are
continuously moving into a folder. For example, when a change is detected, you can continuously
launch a file processing script. Then continue polling for changes.
3) The Directory Change task can also be embedded within a Chain task, and is useful for conditional
task processing. If you want to use this task in a chain for conditional processing, select 'None' as the
'Task To Run'. If the criteria is satisfied, then an exit code = -100 is thrown. Else, an exit code = 0 is
thrown.

IMPORTANT: This task only detects changes while the task is running. So, if you start/restart the
engine at 10:00 AM, and if your next DirChange task is at 10:30 AM, any directory changes between
10:00 AM - 10:30 AM, will go undetected. This task is best used on servers, where you do not have to
restart the engine often.

Directory
Enter the directory or file you need to monitor.

Task To Run
Select the desired task to run if any of the selected criteria are met. If you want to use this task in a
chain for conditional processing, select 'None'. You can also select multiple tasks, to run in sequence or,
to run simultaneously. To run tasks in sequence, use taskTitle1|taskTitle2|taskTitle3. To run tasks
simultaneously, use taskTitle1&taskTitle2&taskTitle3.

Maximum wait time
Set the maximum allowed time to wait for a change to occur (T1).

Polling Interval
Enter the polling interval in seconds. The default value of 60 seconds is recommended. You can choose
a smaller interval if you require.

Use as Daemon
Select this option if you need to continuously poll a directory for changes and trigger another task to
run. This option should not be used when running in a chain.
To monitor a directory 24 hours a day, do the following:

Set the maximum wait time (T1) for the task = 24x60 = 1440 minutes. Schedule this task to run once a
day (every 24 hours). i.e. when the previous schedule dies a new schedule is kicked off.

Using Directory Change Task in a Chain

● Create a "DirChange" task with the directory or file you need to monitor for changes.
● Create a Chain Task with the above "DirChange" task as the 1st step.
● Set the maximum wait time (T2) to be greater than T1 above.
● Use the Exit Code criteria as (if Exit Code != -100 Go to Step 10) i.e. stop chain if exit code != -

100
● Add a second task after this step.
● Set this Chain to run at time = X.
● Set another task type like (ftp, program etc.) to run at time = X+1 minutes
● On successful completion, the other task type (ftp, program etc.) should generate/copy/move/

delete a file in the desired directory.
● If a directory change is detected, the DirChange task will exit with Exit Code = -100 and the

Chain will run the 2nd task.
● If the task wait time (T1) is exceeded, the DirChange task will exit with Exit Code != -100 and

the Chain will terminate without running the 2nd task.

Difference between Directory Change and Directory Monitor Tasks
Directory Change task keeps polling the directory for the maximum time set. When the maximum time
expires, or a change is detected, this task either exits, or continues polling as a daemon. Can only
monitor single directory, or a single file.
Directory Monitor task stores (in a log file), the modified date information for all files within the
directory. This log file is read, and updated, with every run. The Directory Monitor task will return,
after it compares the modified date information in the log file, with the actual modified dates of the files
in the directory. Can also monitor sub directories.

Delete Files

The Delete task allows you to Delete file(s) within a single directory. You can also use the 'Local
Monitor' task combined with the Delete task. This allows you to delete files based on file modified date
or file size.

Directory
Enter the full path name of the directory where your files exists. Note that the path is case sensitive for
unix Ftp servers.

Filename
Enter the name filter for the files you wish to copy using the following wildcard rules. This field also
supports dynamic variables. Using dynamic variables, you can select a file based on current date/time.

Date Filter
If you need to filter files based on file modified date, select this option. For the between option, enter 2
values separated by '-' (2-4 etc.). Examples:
Older than 5 Minute, Newer than 2 Day, Between 3-5 Day, Between 1-4 Hour

Database Test

This is the most difficult task to implement correctly. Please read this entire documentation very
carefully.

This utility helps you to test your connection to a database, on your system or, on any remote system. It
connects to your database using an intermediate JDBC (Java Database Connectivity) driver. A database
vendor or third party vendor provides this driver. Detailed JDBC driver and connection information
for popular databases like MSAccess, Oracle, Informix, MySql, mSql, Postgres are included in our
knowledge base. The knowledge base is online at www.hiteksoftware.com. Go to our main support
page and use the knowledge base link. Our knowledge base will have information on these databases,
and other databases provided by our users.

Detailed information on JDBC drivers, that are available for most databases, is provided by www.
javasoft.com. Please read the JDBC driver documentation very carefully. The driver documentation will
specify the values for the Driver Class Name and Database Url.

Database JDBC driver
For your database, you need to obtain the JDBC driver from your database vendor or other 3rd party
vendor. The commercial database vendors have free JDBC drivers available at their web site. Legal
issues may prevent us from redistributing some of these free JDBC drivers, in our software or, at our
web site.

The JDBC driver is generally in the form of a .zip or .jar file. You need to place the JDBC driver
in the following folder depending on your installation method. Then restart the
engine and the user interface.
For installs including JVM : ...Automize/jre/lib/ext
For installs without JVM : ...jre/1.3/lib/ext or JDK1.3/jre/lib/ext etc.. depending on your system

Driver class name
Enter the class name for the driver. This information will be available, in the driver documentation. For
Microsoft Access database, simply enter "access". Also, the JDBC driver required for MSAccess is
included within java itself.

Database Url
Enter the Url connection information. This information will be available, in the Java JDBC driver
documentation.
The Url format will vary with vendor, but generally includes the server name, port, and database name,
username, and password.

Authorization
If your database requires authentication, then select this option and enter your username and password.

Username
Enter your username if required for database access. It is case sensitive.

Password
Enter your password if required for database access. It is case sensitive.

Directory Monitor

The Directory Monitor task is a special type of task which can be used in two ways:
1) If a change is detected in this task, you can run another task, or
2) The Directory Monitor task can also be embedded within a Chain task, and is useful for conditional
task processing. If you want to use this task in a chain for conditional processing, select 'None' as the
'Task To Run'. If the criteria is satisfied, then an exit code = -100 is thrown. Else, an exit code = 0 is
thrown.

The Directory Monitor task also outputs a variable called 'TaskTitle::Filenames". This variable contains
the list of all files that have been modified, since the last time this task was run. The format of this
variable is #file1^#file2^#file3, where file1, file2, file3, are the names of the files, that have been
modified. You can use this variable directly as the filename in other copy, ftp, or delete tasks, to process
only these files.

Directory to Monitor
Enter the directory or file you need to monitor.

Include Subdirectories
To monitor all sub directories, select this option

Filename
Enter the name filter for the files you wish to copy using the following wildcard rules. This field also
supports dynamic variables. Using dynamic variables, you can select a file based on current date/time.

Task To Run
Select the desired task to run if any of the selected criteria are met. If you want to use this task in a
chain for conditional processing, select 'None'. You can also select multiple tasks to run in sequence, or
to run simultaneously. To run tasks in sequence, use taskTitle1|taskTitle2|taskTitle3. To run tasks
simultaneously, use taskTitle1&taskTitle2&taskTitle3.

Using Directory Monitor Task in a Chain

● Create a Directory Monitor task with the directory or file you need to monitor for changes.
● Create a Chain Task with the above "Directory Monitor" task as the 1st step.
● Use the Exit Code criteria as (Exit Code != -100 Go to Step 10) i.e. stop chain if exit code != -

100
● Add a second task after this step.
● If a directory change is detected from comparison with the previous run of this task, the Directory

Monitor task will exit with Exit Code = -100 and the Chain will run the 2nd task.
● If no change is detected, the Directory Monitor task will exit with Exit Code = 0 and the Chain

will terminate without running the 2nd task.

Difference between Directory Change and Directory Monitor Tasks
Directory Change task keeps polling the directory for the maximum time set. When the maximum time
expires or a change is detected, this task either exits or continues polling as a daemon. Can only monitor
single directory.
Directory Monitor task stores (in a log file), the modified date information for all files within the
directory. This log file is read and updated with every run. The Directory Monitor task will return as
soon as it finishes reading, and comparing the modified date information in the log file with the actual
modified dates of the files in the directory. Can also monitor sub directories.

Email

The email task allows you to send email automatically to multiple recipients. You can also attach files.

Email Server Profile
Select the profile name for the email server. You should have previously created an email profile, using
the Email Profiles menu item.

Adding a recipient to the current email message
You can add a recipient in 2 ways.

1. Enter the email address directly into the recipient text box. Hit the button to add the recipient to
the recipient list.
2. Select the recipient in the address book, then select the recipient type (To:, cc:, bcc:) and hit the paste

button icon . This will add the recipient to the recipient list box.

Adding a recipient to the email address book

You can add a new recipient to the email address book, using the new button icon . Enter the desired
name and email address. You have to hit enter, for any changes in the address book to be validated.

Subject
Enter the subject. This field also supports dynamic variables. For example, you could automatically
parse the current date, or computer IP address, into the subject.

Message Body
1) Enter the message body directly into the text field.
2) This field also supports dynamic variables. For example, you could automatically parse the current
date, or computer name, into the message.
3) Or, You can let the task dynamically parse the message text from a file on your system using the
following format:
$$$[message_file_path].
for example on windows, if the message file is c:\data\message.txt, use:
$$$c:\data\message.txt

Adding Attachments
1) To add an attachment, type in the full path name of the file into the Attachment Text Box, or use the
"Browse" button to select the file. The format for the attachments is: AbsoluteFilePath1,

AbsoluteFilePath2,......
Example: c:\data\test.txt,c:\temp\data.htm
2) You can also specify multiple filenames in multiple directories, by using the following format:
[DIR]c:\your_dir[FILE]name_filter,...............
Enter the name_filter for the files you wish to transfer, using the following wildcard rules
Example: to attach all files that end with .txt from the c:\temp folder, use:
[DIR]c:\temp[FILE].txt
3) This field also supports dynamic variables.
Example:
To attach all files in the c:\temp folder, which has the current date (example: 06-21-02) in their
filename, use:
[DIR]c:\temp[FILE]$%DATE::pp-dd-yy%$
The date format in the filename has to match that entered above. See dynamic variables for more details

Append to Filename
You can append the date/time or a customized date to the attachments based on current time/date, or
custom code.

Headers
You can specify headers to add to the email. This will allow you to add mail priority, or other specific
flags. An email server may not display all the headers you specify, or may not understand the headers
you specify. For example, if you attempt to specify Email priority level, an email server may accept any,
or all, or none of the following flags: X-Priority, X-MSMail-Priority, Importance, Priority.

To specify headers, use the following syntax:
header1=value1^header2=value2^header3=value3

Header Examples:
X-Priority=1^ Priority=Urgent
Importance=high
Reply-To=test@test.com

Email Logs

This administrative task will send you an email with the output log and activity log attached. You can
save this task to the 'All Tasks' table, and then schedule this task. This is useful, if you deploy the
software on a remote machine.

Email Server Profile
Select the profile name for the email server. You should have previously created an email profile, using
the Email Profiles menu item.

Email Recipients
Enter the email address(es) to receive the email message. Separate multiple addresses by a comma ,.

File Monitor

The File Monitor task is a special type of task, which can be used in two ways:
1) If a change is detected in this task, you can run another task.
2) The File Monitor task can also be embedded within a Chain task, and is useful for conditional task
processing. To use this task in a chain for conditional processing, select 'None' as the 'Task To Run'. If
the criteria is satisfied, then an exit code = -100 is thrown. Else, an exit code = 0 is thrown.

The File Monitor task also outputs a variable called 'TaskTitle::Filenames". This variable contains the
list of all files that satisfy the monitoring criteria. The format of this variable is #file1^#file2^#file3,
where file1, file2, file3 are the names of the files, that have been modified. You can use this variable
directly as the filename, in other copy, ftp, delete tasks, to process only these files.

Directory
Enter the directory where your files are located

Filename
Enter the name filter for the files you wish to copy using the following wildcard rules. This field also
supports dynamic variables. Using dynamic variables, you can select a file based on current date/time.

Task To Run
Select the desired task to run, if any of the selected criteria are met. If you want to use this task in a
chain for conditional processing, select 'None'. You can also select multiple tasks, to run in sequence, or
to run simultaneously. To run tasks in sequence, use taskTitle1|taskTitle2|taskTitle3. To run tasks
simultaneously, use taskTitle1&taskTitle2&taskTitle3.

Options
The Task will be run, if any of the following selected criteria are satisfied. You can select 1 or more
criteria.
1) File(s) which satisfy the Filename criteria exists
2) File(s) which satisfy the Filename criteria, as well as file size criteria
3) File(s) which satisfy the Filename criteria, as well as date modification criteria
4) Total files in directory are greater/less than certain value. This option does not update any of the
dynamic variables.

Using File Monitor Task in a Chain

● Create a File Monitor task with the directory and file you need to monitor for changes.
● Create a Chain Task with the above "File Monitor" task as the 1st step.

● Use the Exit Code criteria as (Exit Code != -100 Go to Step 10) i.e. stop chain if exit code != -
100

● Add a second task after this step.
● If a change is detected from comparison with the previous run of this task, the File Monitor task

will exit with Exit Code = -100. The Chain will run the 2nd task.
● If no change is detected, the File Monitor task will exit with Exit Code = 0. The Chain will

terminate without running the 2nd task.

Ftp

Before creating an Ftp task, we recommend that you use the FTP browser utility to get a connection. The
ftp task allows you to transfer files from/to a server.

Ftp Profile
Select the ftp profile for the ftp server you need to connect to. You should have previously created an ftp
profile, using the Ftp Profiles menu item.

Ftp Option
Use 'Get' to transfer files from the server, to your local system. Use 'Put' to transfer files from your local
system, to the server. Use 'Delete' to delete files from the server.

Remote Directory
This is the most difficult parameter to enter correctly. We recommend that you use the FTP browser
utility, to determine the value of the full path name, of the remote directory. Execute privilege is
required for the remote directory, for all Ftp functions. Read privilege is required for Ftp Get. Write
privilege is required for Ftp Put, and Ftp Delete functions. The path is case sensitive for unix Ftp
servers. If you are transferring files from the Default FTP login directory, you can leave this field
blank.

Local Directory
Enter the full path name of the local directory, where you need to put or get files.

Backup to Local Directory
Enter the full path name of the local directory, where you need to backup files. The Backup to local
directory option does not support subdirectories. All files will be placed in the backup directory, without
creating new subfolders in it.

Backup to Remote Directory
Enter the full path name of the remote directory, where you need to backup files. The Backup to remote
directory option does not support subdirectories. All files will be placed in the backup directory, without
creating new subfolders in it.

Use Staging
If you select this option, the file is first transferred to the local (get) or remote (put) folder entered. This
folder acts as a staging folder. After the Ftp transfer is complete, the file is moved to the final
destination folder. This option prevents processes from working on files, while the Ftp transfer is in
progress. In the staging field, you should enter the full path name, of the final destination directory. The
staging option does not support subdirectories. All files will be placed in the final destination directory,
without creating new subfolders in it.

Filename
Enter the name filter for the files you wish to copy using the following wildcard rules. This field also
supports dynamic variables. Using dynamic variables, you can select a file based on current date/time.

Transfer Type
File transfer type can be either Ascii or Binary. Binary mode will transfer .exe, .jpg or other binary
files. Binary mode should be the default transfer mode. Ascii mode can be used to transfer text or html
files. If you transfer binary files in ascii mode, you will not get the entire file.

Append date/time To filename
You can choose to append either the date, or the date/time, or custom code. If your filename has an
extension, the date or date and time is appended before the extension. This feature is useful for archive
purposes.

Maintain Timestamp (for Get only)
The task can reset the transferred local files timestamp, to match the remote files timestamp. This
applies ONLY to the GET option.

Reset Local Timestamp (for Put only)
There is no Ftp standard, to reset the remote files timestamp, to match the local files timestamp after an
Ftp PUT. Hence, we provide the option to reset the source local files timestamp, to match the newly
transferred remote files timestamp. There is a new proposal, to reset the remote file timestamp, using the
MFMT (Modify file modification time) command. However, not many Ftp servers support the MFMT
command. (Many Ftp servers incorrectly allow setting the remote file timestamp, using the MDTM
command. This MDTM command is not an Ftp standard to set the remote file timestamp. The Ftp task
does not reset the timestamp through this MDTM command.)

Delete Source file
You can choose to delete the source file, after a successful transfer. If the ftp transfer fails, the source
file will not be deleted.

Transfer with temporary extension
The file is transferred with a temporary extension, and then renamed to the desired name, after the
transfer is complete. This is useful, if you have automated scripts/programs, which continuously work
on transferred files, with certain extensions. This ensures that, the automated script will not work on a
partially transferred file.

Log Transfer
You can choose to log the transfer into the Ftp Log.

Transfer Modified files
If you choose this option, files are transferred, only if the source file, is newer than the target file. You
can specify an offset to be added to the remote ftp files timestamp, while comparing the timestamps.

Ftp server time offset
Sometimes, a Ftp server is in a different timezone from your local system. You can specify an offset to
be considered while determining which file (local or remote) is newer. The remote file timestamp is not
changed. Enter a positive number to add an offset to the actual remote ftp file timestamp. Enter a
negative number to subtract an offset from the actual remote ftp file timestamp. For example, consider a
file with:
Actual Local file timestamp = June 1, 2005, 10:00 PM
Actual Remote file timestamp = Jun 1, 2005, 10:30 PM

Offset = 0
Put Option: File will not be transferred, since remote file is newer than local file
Get Option: File will be transferred, since remote file is newer than local file

Offset = -60 (Remote file timestamp is now calculated as 9:30 PM)
Put Option: File will be transferred, since calculated remote file timestamp is older than local file
timestamp.
Get Opton: File will not be transferred, since calculated remote file timestamp is older than local file
timestamp.

Transfer Modified files using Ftp Log
If you choose this option, files are transferred, only if the source file date, is newer than the source file
date entry in the Ftp Log. For this option to work correctly, you should also enable the 'Log Transfer'
option. If the source file path is not found in the Ftp log, then the file is always transferred.

Date Filter
If you need to filter files based on file modified date, select this option. For the between option, enter 2
values separated by '-' (2-4 etc..). Examples:
Older than 5 Minute, Newer than 2 Day, Between 3-5 Day, Between 1-4 Hour

File Permissions
For the PUT option, you can reset the permissions of the file, after the file is transferred to the server.
The site must support the "SITE chmod" command. This is normally valid only on UNIX-based
systems.
Examples for field entry:
644 = rw- for USER, r-- for GROUP, r-- for WORLD
755 = rwx for USER, r-x for GROUP, r-x for WORLD
754 = rwx for USER, r-x for GROUP, r-- for WORLD
where r = read, w = write, and x = execute permissions.

Ftp Commands

This task allows you to connect to an ftp server and issue commands. There are two types of commands
supported:
1) The standard ftp commands as defined in RFC 959. Please see list of ftp commands. Only the most useful
commands are listed here. Please search the internet for RFC 959 if you need more information on all the
standard Ftp commands.
2) Custom functions provided by the Ftp Command task. Please see list of custom functions.

Please note that the ftp commands, that you normally use in the ftp commandline tools, in MSDOS, MacOSX
or Unix etc. are not necessarily supported. For example, the LS, CD, Get or Put commands, in many
commandline ftp tools are not valid RFC 959 ftp commands. Get and Put, are commands created by many
commandline ftp tools, to implement the RETR and STOR commands, of RFC 959. To put or get files, you
can use the custom functions $$GET& $$PUT that are provided by this task.

This task is multithreaded. So you can run multiple Ftp Command tasks simultaneously.

This task also outputs dynamic variables for each response provided by the Ftp server. The variables are of
the form TaskTitle::ResponseX, where X is the response from the server, for each of your Ftp commands.
You can use these response variables in a Variable Monitor task to do conditional processing.

Host
Enter the host name or IP address of the Ftp server. If you have to connect through an Ftp proxy server, or
firewall, enter the host name, or IP address of the firewall, or proxy server.

Port
Enter the desired port. Default Ftp port = 21

Password
In the password field, enter your password required to connect. Then in the command list, use the following
syntax to send the hidden password: $$LOGIN::username::$PASSWORD$, or if you need to manually
login, use: PASS $PASSWORD$. The string $PASSWORD$ will be replaced by the value in the password
field. If you have no reason to hide your password, you do not need to fill in the password field.

Commands
Enter your ftp commands, 1 per line. The custom commands are case sensitive. First line should normally be
the USER command, and second line should normally be the PASS command. This field also supports
dynamic variables. Using dynamic variables, you can enter a command, which will be dynamically resolved
at runtime. example: cd /users/$%USERNAME%$

Example1

USER tom sends username
PASS $PASSWORD$ sends password
ACCT production sends account information
PWD prints current remote ftp directory
CWD /users/tom sets /users/tom as the current ftp directory
$$LCD::c:\test sets c:\test as the current local directory
$$MPUT::test puts all files from c:\test, which include 'test' in their name, to /users/tom
$$MGET:: gets all files from /users/tom to c:\test

Example2
$$LOGIN::user::$PASSWORD$ logon information
PWD prints current remote ftp directory
CWD /users/tom sets /users/tom as the current ftp directory
$$LCD::c:\test sets c:\test as the current local directory
$$PASV sets the passive mode of transfer
$$GET::test.txt gets test.txt from /users/tom to c:\test
$$PUT::test.txt puts test.txt from c:\test to /users/tom

 List of custom commands

$
$LOGIN

Description: Simple logon using username and password information
Syntax: $$LOGIN::username::password
Examples: $$LOGIN::jim::jim04 or $$LOGIN::jim::$PASSWORD$
Comments: To hide password, use $PASSWORD$ and enter password in password field
For more complicated logons or to connect through firewalls, you may need to use as required:
USER, PASS, ACCT, SITE, OPEN etc..

$$LCD

Description: Sets the current local folder
Syntax: $$LCD::path_to_local_folder
Example: $$LCD::c:\data\test
Comments: Very important. Should always be set before transferring files
Comments: Internal module use only. Ftp server has no idea about current local folder
Comments: Used internally by $$PUT, $$GET, $$MPUT, $$MGET, $$MDEL functions

$$PASV
Description: Sets the passive mode of transfer.
Syntax: $$PASV

$$PUT

Description: Puts a single file from current local folder, to current remote ftp folder
Syntax: $$PUT::filename
Example: $$PUT::test.txt
Comments: Only single file is put, file should exist in current local folder

$$GET

Description: Gets a single file from current remote ftp folder, to current local folder
Syntax: $$GET::filename
Example: $$GET::test.txt
Comments: Only single file is got, file should exist in current remote ftp folder

$$PPUT

Description: Puts a single file from local path, to ftp path
Syntax: $$PPUT::path_to_local_file::path_to_remote_file
Example: $$PPUT::c:\data\test.txt::/users/tom/test5.txt
Comments: Only single file is put, file path should exist in the local system

$$PGET

Description: Gets a single file from ftp path, to local path
Syntax: $$PGET::path_to_remote_file::path_to_local_file
Example: $$PGET::/users/tom/test5.txt::c:\data\test.txt
Comments: Only single file is got, file path should exist in the remote system

$$MPUT

Description: Puts multiple files from current local folder, to current ftp folder
Syntax: $$MPUT::filename_filter
Example: $$MPUT:: (will put all files from current local folder)
Example: $$MPUT::test (will put all files which include test in their name)
Example: $$MPUT::.txt^.htm (will put all files which have .txt or .htm extensions)
Comments: Enter the filename_filter using the following wildcard rules

$$MGET

Description: Gets multiple files from current ftp folder, to current local folder
Syntax: $$MGET::filename_filter
Example: $$MGET::* (will get all files from current ftp folder)
Example: $$MGET::test (will put all files which include test in their name)
Example: $$MGET::.txt^.htm (will put all files which have .txt or .htm extensions)
Comments: Enter the filename_filter using the following wildcard rules
Comments: Automatically detects directory listing style and get directory information

$
$MSGET

Description: Gets multiple files from current ftp folder to current local folder
Syntax: $$MSGET::* (will get all files from current ftp folder)
Example: $$MSGET::test (will put all files which include test in their name)
Example: $$MSGET::.txt^.htm (will put all files which have .txt or .htm extensions)
Comments: Enter the filename_filter using the following wildcard rules
Comments: Only obtains names of objects in current ftp directory
This function does not try to detect if object is a File, or a Directory.
It will also try to GET directories, if they satisfy the filename filter.
This results in the following error being output, for every Directory in current ftp folder:
550 dir_name: [Error information varies by ftp server]. This is expected behaviour.

$$MDEL

Description: Deletes multiple files from current ftp folder
Syntax: $$MDEL::filename_filter
Example: $$MDEL:: (will delete all files from current local folder)
Example: $$MDEL::test (will delete all files which include test in their name)
Example: $$MDEL::.txt^.htm (will delete all files which have .txt or .htm extensions)
Comments: Enter the filename_filter using the following wildcard rules

List of useful ftp commands - RFC 959

HELP

Description: Returns list of commands or details for a single command
Syntax: HELP [command]
Example: HELP returns a list of commands supported by the ftp server
Example: HELP USER returns details on the USER command

USER
Description: Sends the username to begin the login process
Syntax: USER userID
Example: USER tom

PASS
Description: After sending the USER command,send this command to complete login
Syntax: PASS user_password
Example: PASS ergts56r

PASV
Description: Sets the passive mode of transfer.
Syntax: PASV

TYPE

Description: Specifies ascii or binary mode of data transfer
Syntax: TYPE mode
Example: TYPE I or TYPE A
Comments: A - ASCII text, E - EBCDIC text, I - image (binary data)

PORT

Description: Specifies host & port to which the ftp server should connect for next data transfer
Syntax: PORT h1,h2,h3,h4,p1,p2
Example: PORT 192,168,0,121,15,196
Comments: ip address = h1.h2.h3.h4, port = p1*256 + p2

ACCT
Description:Sends the account required for login
Syntax: ACCT account_name
Comments: normally sent after the PASS command. Uncommon command

CWD
Description: Sets the current ftp directory on remote ftp server
Syntax: CWD remote_ftp_path
Example: CWD /users/tom/data

CDUP
Description: Sets the parent of the current ftp folder to be the current ftp folder
Syntax: CDUP

DELE
Description: Deletes a single file from the current ftp folder
Syntax: DELE filename
Example: DELE test.txt

RNFR

Description: Used to rename a file. Specifies the file to be renamed
Syntax: RNFR original_name
Example: RNFR test.txt
Comments: Should be followed by RNTO command

RNTO

Description: Used to rename a file. Specifies the new name for the file
Syntax: RNTO new_name
Example: RNTO new.txt
Comments: Should be preceded by RNFR command

SITE

Description: Used to issue a site specific command
Syntax: SITE command
Example: Use 'HELP SITE' to see list and syntax of supported commands
Comments: May not be supported by many Ftp servers

RETR

Description: Transfers file from remote host
Syntax: RETR filename
Example: RETR test.txt
Comments: Should be preceeded by the PORT or PASV commands

STOR

Description: Transfers file to the remote host
Syntax: STOR filename
Example: STOR test.txt
Comments: Should be preceeded by the PORT or PASV commands

Ftp Monitor

You can monitor a remote ftp folder for changes, or other criteria. This task can be used in two ways:
1) If a change is detected in this task, you can run another task, or
2) The Ftp Monitor task can also be embedded within a Chain task, and is useful for conditional task
processing. If you want to use this task in a chain, for conditional processing, select 'None' as the 'Task
To Run'. If the criteria is satisfied, then an exit code = -100 is thrown. Else, an exit code = 0 is thrown.

The Ftp Monitor task also outputs a variable called 'TaskTitle::Filenames". This variable contains the list
of all files that satisfy the monitoring criteria. The format of this variable is #file1^#file2^#file3, where
file1,file2,file3 are the names of the files, that have been modified. You can use this variable directly, as
the filename in other copy, ftp, delete tasks to copy/ftp/delete only these files. This variable is only
updated if the filename, filesize, or filedate criteria options are selected.

Directory
Enter the remote folder that you wish to monitor

Filename
Enter the name filter for the files you wish to copy using the following wildcard rules. This field also
supports dynamic variables. Using dynamic variables, you can select a file based on current date/time.

Task To Run
Select the desired task to run, if any of the selected criteria are met. If you want to use this task in a
chain for conditional processing, select 'None'. You can also select multiple tasks, to run in sequence, or
simultaneously. To run tasks in sequence, use taskTitle1|taskTitle2|taskTitle3. To run tasks
simultaneously, use taskTitle1&taskTitle2&taskTitle3.

Options
The Task will be run, if any of the following selected criteria are satisfied. You can select 1 or more
criteria.
1) Any change is found in the directory, since the last run of this task. This option does not update any
of the dynamic variables.
2) File(s) which satisfy the Filename criteria exists
3) File(s) which satisfy the Filename criteria, as well as file size criteria
4) File(s) which satisfy the Filename criteria, as well as date modification criteria
5) Total files in directory are greater/less than certain value. This option does not update any of the
dynamic variables.

Ftp Server Address

file:////Win3/data/Java/Automize6/Help/English/DynamicVariables.htm

The Ftp server address, is the name, or the IP address, of the Server on the network. Please check this
value, from your network administrator, or Internet service provider, or Ftp server administrator.

Server Port
The default ftp command port is 21.

Username and Password
If the Ftp server is private, you will typically need a username/password to transfer files. Please check
with the Ftp server administrator, for your user account information.

Directory Listing Style
Ftp servers provide directory listing in various formats. The most common is the Unix style. We
currently support Unix and DOS listing styles. If your Ftp server provides a listing in some other style,
the task may fail. However, most Ftp servers have an option to provide directory listing in the Unix
style. Please request your Ftp administrator, to set up your Ftp account, to receive listing in Unix style if
possible.

If your Ftp server does not provide a listing in the Unix or DOS style, you can try the NameOnly option.
Here, only a list of names in the directory is obtained. There is no information on the size, date, or if the
name corresponds to a file, or a directory. Hence, you cannot transfer files based on date, or size. Also,
since the file or directory information is not available, subdirectory (tree) transfers are not possible in
this mode.

Passive Mode
In normal mode, the Ftp server creates the data connection. In Passive mode, your local system will
create the data connection. You may need to use passive mode, if you are behind a firewall/proxy
server, or you get erratic transfers, or failed data channel errors.

Using Ftp Monitor Task in a Chain

● Create a Ftp Monitor task with the remote directory you need to monitor for changes.
● Create a Chain Task with the above "Ftp Monitor" task as the 1st step.
● Use the Exit Code criteria as (Exit Code != -100 Go to Step 10) i.e. stop chain if exit code != -

100
● Add a second task after this step.
● If any of the selected criteria are met, the Ftp Monitor task will exit with Exit Code = -100 and

the Chain will run the 2nd task.
● If no change is detected, the Ftp Monitor task will exit with Exit Code = 0 and the Chain will

terminate without running the 2nd task.

Filing Variables

This feature allows you to output the value of a variable, to a local file on your system. You can then
use this file in other tasks, or your own programs. You can also insert the variable into various locations
of a file, depending on certain criteria you select. This feature can be useful in many situations,
examples:
1) monitoring your own log files for 'errors' which occur today or within the last hour etc.
2) appending one file to another.

Variable name
Select the variable you need to monitor from the list. For some variables like DATE, you need to
manually enter the format. In version 6.x, you need to enter the variable name surrounded by $%…%$.
In version 5.x, the surrounding $%…%$ was not required. By adding the $%…%$ into the format, it is
now possible to set the Variable Name field as an entire line of text which includes the variable.
Examples of Variable Name Field entries:
Today's date is $%DATE::qqq-dd_hh:mm%$
my username is $%USERNAME%$
This ip address = $%IPADDRESS%$

Filepath
Enter the full file path of the file, which you want to save the variable to. This field supports dynamic
variables.

Filing Options
Choose your filing criteria. You can insert the value of the variable into various locations. If you
choose the 'Line Number' or one of the 'String containing' options, you should enter the correct 'Option
Value' also.

Option Value
This Option Value depends on the Filing Option above.

Examples:
Variable Name = $%DATE::qqq-dd_hh:mm%$
Filing Option = Insert at Line Number
Option Value = 10
This will insert the date/time at line 10 in the file
or
Variable Name = $%DATE::qqq-dd_hh:mm%$
Filing Option = Insert before first line containing
Option Value = error

This will insert the date/time in the file, before the first line that contains the word 'error'

Types of variables listed:
Task Variables: Task variables values are generated/updated when the tasks run. Example: Tasks exit
codes are stored as the following variable: TaskTitle::ExitCode
System Variables: System variables which are resolved when the current task runs, examples are
DATE, USERNAME etc..
Java Variables: Java variables that are available to the Java Virtual Machine that the program runs in.
You can get the value of java variables from the Utilities menu / Java Variables
User Variables: Users can add their own variables via batch files, scripts or programs. This way users
can link output from their own programs to this program.

Log File Monitor

The Log file monitor task allows you to monitor a log file for certain alert terms. If the alert term is
found, then the timestamp for the log entry is determined and archived. If the timestamp is newer than
the previously archived timestamp, you can choose to run another task(s). Also, an exitcode = -100 is
thrown when a new alert is found.

FilePath
Enter the full path to the log file, that needs to be monitored.

Alert Terms
Enter the alert term required. If you have more than 1 alert term, separate them by a character, not
included within the alert term. Example: Searching^Java^Automation . This field also supports
dynamic variables. Using dynamic variables, for example, you can search a logfile for today's date/time,
and run a task if that entry is found.

Alert Term Separator
Enter the separator character used between alert terms, if you have more than 1 alert term.

Logging Direction
New logging entries can either be inserted at the top, or added at the bottom.

Task To Run
Select the desired task to run, if any of the selected criteria are met. If you want to use this task in a
chain, for conditional processing, select 'None'. You can select multiple tasks to run in sequence or
simultaneously. To run tasks in sequence, use taskTitle1|taskTitle2|taskTitle3. To run tasks
simultaneously, use taskTitle1&taskTitle2&taskTitle3.

Logging Date Format
Enter logging date format, using the following rules below. Please read this entire section very carefully,
and please read all the Examples, at the bottom of this section. If you make any mistake in entering the
format, the task will not be able to read the timestamp and the task will fail.

Rules:
1) The log file should have a standardized log format. The timestamp should be in the same column
location, for all lines, else the timestamp in that particular line, will not be parsed.
2) The format is: variable1=xxxx(-)variable2=yyyyyy(-)….etc.
3) One of these types of formats can be specified a) columnformat or b) tokenformat

formattype = columnformat/tokenformat

For tokenformat, use the following variables

formattype = tokenformat

tokens = separators that are used to separate fields. Multiple separators can be specified, one after
another. Example: tokens=SPACE*&-_(-) would use the following characters as separators: whitespace
* & - _

tokcol_x = specify the format for tokcol_x. Please see examples at bottom of this page for details.

For columnformat, use the following variables

formattype = columnformat

colsep = separator between columns in the log file. Enter SPACE if the column separator is white-space
or Enter TAB if the columns are separated by tabs. Example: colsep=SPACE(-) or colsep=,(-)

datecol = Column where date is logged. Example: datecol=4(-)

timecol = Column where time is logged. Example: timecol=4(-)

dateformat = date format used. Example: dateformat=YY-qq-dd(-)

timeformat = time format used. If datecol is same as timecol, leave this field empty. Example:
timeformat= hh:mm:ss(-)

tokens = separators between fields. use all separators between date components and time components as
well as the separator between date and time, if datecol is same as timecol

Examples:
if date is like 03-15-2004, and time is like 09:15:05, tokens=-:(-)
if date and time are logged into same column like, 03-15-2004_09:15:05, tokens=_-:(-)

Specifying date/time formats
Use the same rules, as that used for the DATE variable. Example:
If date time logging output = Feb 3, 2004 4:44:07 PM
Date time format required = Qqq ddx, YY hhx:mm:ss am_pm

YY = 4 digit year is always output (2001 etc..)
yy = 2 digit year is always output (00-99)
pp = 2 digit month is always output (01-12)
ppx = 1 or 2 digit month can be output(1-12)
qqq = 3 character month is always output (jan-dec)
QQQ = 3 character month is always output (JAN-DEC)
Qqq = 3 character month is always output (Jan-Dec)
dd = 2 digit date is always output (01-31)
ddx = 1 or 2 digit date can be output(1-31)
HH = 2 digit hour based on 12 hour clock is always output (01-12) (should generally be used with
am_pm)
HHx = 1 or 2 digit hour based on 12 hour clock can be output(1-12)
hh = 2 digit hour based on 24 hour clock is always output (00-23)
hhx = 1 or 2 digit hour based on 24 hour clock can be output (0-23)
mm = 2 digit minute is always output (00-59)
mmx = 1 or 2 digit minute can be output (0-59)
ss = 2 digit seconds is always output (00-59)
ssx = 1 or 2 digit seconds can be output (0-59)
am_pm = AM is output for AM hours, PM is output for PM hours

Examples of Logging date format field entries
1) NCSA Combined / NCSA Extended / Extended Log Format / Microsoft Extended Format.
Example log entry:
2667 avi.start.com - Authorize 401 /pi.admin 1998-03-09 15:21:37 2345

ColumnFormat Logging date format field should be:
formattype=columnformat(-)colsep=TAB(-)tokens=:-(-)datecol=7(-)timecol=8(-)dateformat=YY-dd-qq
(-)timeformat=hh:mm:ss(-)

TokenFormat Logging date format field should be:
formattype=tokenformat(-)tokens=-:TAB(-)tokcol_7=YY(-)tokcol_8=pp(-)tokcol_9=dd(-)tokcol_10=hh
(-)tokcol_11=mm(-)tokcol_12=ss(-)

2) NCSA - Common Log File format:
Example log entry:
255.255.255.255 - REDMOND\doug [07/Jun/1996:17:39:04 -0800] "POST /iisadmin/default.htm?-,
HTTP/1.0" 200 3401

ColumnFormat Logging date format field should be:
formattype=columnformat(-)colsep=space[(-)tokens=:/(-)dateformat=dd/Qqq/YY:dd:mm:ss(-)

timeformat=(-)datecol=4(-)timecol=4(-)

TokenFormat Logging date format field should be:
formattype=tokenformat(-)tokens=[/:SPACE (-)tokcol_5=dd(-)tokcol_6=Qqq(-)tokcol_7=YY(-)
tokcol_8=hh(-)tokcol_9=mm(-)tokcol_10=ss(-)

3) Microsoft IIS Log Format
Example log entry:
255.255.255.255, user_name, 03/20/98, 23:58:11, MSFTPSVC, SALES1, 255.255.255.255, 60, 275, 0,
0, 0, PASS, intro.htm

ColumnFormat Logging date format field should be:
formattype=columnformat(-)colsep=,SPACE(-)tokens=:/(-)dateformat=dd/Qqq/YY(-)timeformat=dd:
mm:ss(-)datecol=3(-)timecol=4(-)

TokenFormat Logging date format field should be:
formattype=tokenformat(-)tokens=,SPACE/:(-)tokcol_3=pp(-)tokcol_4=dd(-)tokcol_5=YY(-)
tokcol_6=hh(-)tokcol_7=mm(-)tokcol_8=ss(-)

4) WebSTAR Log format
Example log entry:
03/09/98 15:21:37 ok avi.start.com :pi.admin 2667

ColumnFormat Logging date format field should be:
formattype=columnformat(-)colsep=TAB(-)tokens=:/(-)dateformat=dd/pp/yy(-)timeformat=hh:mm:ss(-)
datecol=1(-)timecol=2(-)

TokenFormat Logging date format field should be:
formattype=tokenformat(-)tokens=TAB/:(-)tokcol_1=pp(-)tokcol_2=dd(-)tokcol_3=yy(-)tokcol_4=hh(-)
tokcol_5=mm(-)tokcol_6=ss(-)

5) No tokens format, date and time in same column
Example log entry:
03292004-152137 Test task - exit=0
Only ColumnFormat Logging can be used as follows:
formattype=columnformat(-)colsep=SPACE(-)tokens=(-)dateformat=ppddYY-hhmmss(-)timeformat=(-)
datecol=1(-)timecol=1(-)
tokens should always be blank, if either the date or time components, are not separated by a separator

character, i.e. tokens=(-)

6) No tokens format, date and time in different columns
Example log entry:
03292004 152137 Test task - exit=0
Only ColumnFormat Logging can be used as follows:
formattype=columnformat(-)colsep=SPACE(-)tokens=(-)dateformat=ppddYY(-)timeformat=hhmmss (-)
datecol=1(-)timecol=2(-)
tokens should always be blank, if either the date or time components, are not separated by a separator
character, i.e. tokens=(-)

Maintenance

This feature does the following:
1) It requests the Java Virtual Machine to do memory cleanup.
2) It saves user, task and schedule data.
3) Re-launches the Scheduler Engine automatically.

You can create and schedule a Maintenance task weekly/monthly to free memory, if you notice that the
memory consumption by the Engine is high. Please create only a single Maintenance task. Make sure
that no other task is scheduled, when this task has a scheduled run. Leave at least 1 minute idle time,
before this task runs. Generally, you may need to run this task only on Windows and Mac OS. This
Maintenance task is also useful, if you are running tasks very frequently (every few seconds), and
running out of memory. In this case, you can schedule a Maintenance task more frequently, depending
on your needs.

On Solaris and Linux, we have run tasks every 10 seconds for 1 month continuously, without running
out of memory, or the engine shutting down. The memory usage, during this accelerated reliability
testing, stabilized at a peak of ~50 MB, for the entire 1 month testing period. Normally, the memory
usage should cycle up and down between 15-30 MB.

About Memory Usage
This program does not handle any of the low-level memory allocation and release. Memory allocation
and release is done by Java. Java prevents the programmer, from accessing all low-level memory
handling routines, making memory safe. This prevents memory leaks and corruption, within the
program, or in other running applications. This prevents serious problems, that can occur with C or C++
programs, like memory access violations, page faults, illegal operations, system crashes etc.
Java has automatic memory recycling, called garbage collection. Hence, you should see the memory
usage, cycle up and down between 15-30 MB. However, Java tends to consume lots of memory, and
may not release it efficiently on some Windows and Mac OS systems. The default maximum memory
allowable is 64 MB. Sometimes, Java will keep requesting more memory, from the operating system.
Java may shut down automatically, when the maximum allowable memory (64MB) is exceeded. This is
due to incomplete garbage collection, by the Java machine, on certain operating systems.

Ping

This task allows you to check, if a server is open to connection, on the specified port. Each ping result is
logged by the task. The uptime statistics, for the server:port combination, can be viewed via the Logs /
TaskLogs window. The statistics filename is "TaskTitle_statistics".
The "Ping" protocol is not actually implemented. Only a simple socket connection, to the specified host
is attempted. For safety purposes, you can only ping a server every 1 minutes. If the server is pinged
twice in less than a minute, the socket connection will not be attempted, and an Exit Code = 5 is
returned.

Host
Enter the host name or IP address.

Port
Enter the desired port. Common ports are: SMTP=25, FTP=21, HTTP=80, TELNET=23, POP3=110.

Ping Statistics
When a ping task finishes running; a special log file named "TaskTitle_statistics" is generated. You can
view this statistics file, by clicking on the filename, in the Logs / TaskLogs Window. This allows you to
maintain uptime statistics of your server.

Resetting the Ping Statistics File
Go to the Logs menu, and select the "Manage Logs" menu item. Select the statistics file for your ping
task, and hit delete. The ping statistics will be cleared, and will start afresh, the next time the task is run.

Print Files

The Print task allows you to print text files only.

Directory
Enter the full path name of the directory, where your files exists. Note that the path is case sensitive for
unix Ftp servers.

Filename
Enter the name filter for the files you wish to copy using the following wildcard rules. This field also
supports dynamic variables. Using dynamic variables, you can select a file based on current date/time.

Synchronize Folders

This task allows you to synchronize two folders.

Action

Three synchronization modes are supported. Be careful when using the Unidirectional Mirror mode,
because newer files can be replaced by older files, and unpaired files are deleted.

1) Bi-directional Mirror
All unpaired files and folders in the Source are copied to the Target.
All unpaired files and folders in the Target are copied to the Source.
Older files in the Target are replaced with their newer counterpart in the Source.
Older files in the Source are replaced with their newer counterpart in the Target.

2) Unidirectional Copy
All unpaired files and folders in the Source are copied to the Target.
Older files in the Target are replaced with their newer counterpart in the Source.

3) Unidirectional Mirror
All unpaired files and folders in the Source are copied to the Target.
Older files in the Target are replaced with their newer counterpart in the Source.
Newer files in the Target are replaced with their older counterpart in the Source.
All unpaired files and folders in the Target are removed.

Source Directory
Enter the full path name of the directory, where your source files exists. Note that the path is case
sensitive for unix Ftp servers.

Target Directory
Enter the full path name of the directory, where you need to put the target files. Note that the path is
case sensitive on unix systems.

Include subdirectories
If you select this option, all subdirectories and files within the Source Directory are copied to the Target
Directory. If a subdirectory does not exist within the target folder, then it is automatically created.

Filename
Leave this field blank if you want all files to be synchronize. Enter the name filter for the files you wish

to synchronize, using the following wildcard rules . This field also supports dynamic variables. Using
dynamic variables, you can select a file based on current date/time.

Folder Filter
Leave this field blank if you want all folders to be synchronized. If you need specific folders to be
synchronized, then enter the folder name, using the following wildcard rules. If a folder passes the filter,
then all its subfolders will also pass the filter.

Text Search

This task allows you to search for a string of text (or multiple strings), within a file (or within multiple
files), in a directory. If the text is found, then the line containing the text, is appended to a results file.
You can also choose to append surrounding lines, to the results file.
You can use this task, to search for text in web pages, or in files located on a ftp server. First run the
web download, or ftp download (get) task, and download the file(s) to a local directory. Then run this
Text Search task on the downloaded file(s).

Source Directory
Enter the full path name of the directory, where the file(s) you need to search are located.

Filename
Enter the name filter for the files you wish to copy using the following wildcard rules. This field also
supports dynamic variables. Using dynamic variables, you can select a file based on current date/time.

Search Term
Enter the search term required. If you have more than 1 search term, separate them by a character,
which is not included within the search term. Example: Searching^Java^Automation . This field also
supports dynamic variables. Using dynamic variables, for example, you can search a logfile for toady's
date/time, and run a task if that entry is found.

Search Term Separator
Enter the separator character used between search terms, if you have more than 1 search term.

Surrounding Lines
If a search term is found, the line is appended to the results file. If you need to append surrounding lines
also, select the desired number of surrounding lines to append.

Results Directory
Enter the full path name of the directory, where you need to put the results File. Note that the path is
case sensitive on unix systems.

Results File
Enter the name for the results File. If left blank, a default filename of your task title is used. This field
also supports dynamic variables. Using dynamic variables, you can save the file to a customized name
based on date/time.

Append to Filename
You can save each archive to a different filename based on current time/date, or based on custom code
you set.

Telnet

This task allows you to telnet to a server and issue commands. If the server is up an exit code = 0. If
server is down or unreachable, exit code = 1. No other exit codes are thrown for login failures etc.

Host
Enter the host name or IP address.

Port
Enter the desired port. Default Telnet port =23.

Delay
Enter the delay time between sending your commands. 1 second is minimum. 5 seconds is good
enough, unless you are on a slow network. You can increase it to ~15, but make sure you do not exceed
the hosts telnet time out value.

Command
Enter your telnet commands, 1 per line. First line should be your username, Second line should be your
password and the last line should be exit. This field also supports dynamic variables. Using dynamic
variables, you can enter a command, which will be dynamically resolved at runtime. example: cd /users/
$%USERNAME%$

Example of Commands to enter
myUsername
myPassword
ls -lt
exit

Telnet(Adv)

This allows you to telnet to a server and issue commands. This Telnet(Adv) task is more advanced than
the Telnet task. It will try and detect the presence of the telnet login prompts, and the telnet command
prompts, before sending the next command. If these prompts are not detected, within the timeout value
set, it will send the next command

Host
Enter the host name or IP address.

Port
Enter the desired port. Default Telnet port =23.

Username
Enter your username.

Password
Enter your password.

Polling Period
Enter the desired polling time. This polling period applies only to Telnet commands, but not to the
Login commands. Polling period does not apply to username and password commands. During the
Login commands, the polling period is fixed at 1 second. For the regular Telnet commands, the module
will poll the connection, at the Polling interval, for the reply string from the server. If the last 10
characters (default value) of the reply string from the server contain the Telnet prompt, then the next
command is sent. This polling period should be less than the command time.

Login Prompt
This is usually the last character, that the server outputs, when it requests a username or password to be
sent. This value is normally : but may depend on the telnet server. The task will look for this character,
in the last 10 characters (default value) of the reply string from the server. If this character is found, the
next command is sent. If the login prompt character is not found, within the Login time set, the next
command is sent.

Telnet Prompt
This is usually the last character, that the server outputs, when it is done processing the current telnet
command. This value normally depends on the system shell you are connecting to. The task will look
for telnet prompt character, in the last 10 characters (default value) of the reply string from the server.
As soon as this character(s) is found, the next command is sent. If the telnet prompt character is not
found, within the telnet command time set, the next command is sent.

Prompt Characters
This module waits for the Login or Telnet prompts, before sending the next command. It will search the
last reply string from the telnet server, for the Login prompt, or the Telnet prompt. You can define how
the module should search for these prompts. If you select Prompt Characters = 10 (default value), then
the module will search the last 10 characters, of the last reply string. If the Login prompt, or the Telnet
prompt, is found in these 10 characters, then the next command is sent. If your server sends a bunch of
characters, after the Telnet prompts (Example: MS Telnet server), then you may have to increase this
value to 1000, to detect the Telnet prompt. As soon as this character(s) is found, the next command is
sent.

Login Time
Enter the maximum time allowed for each login command (username and password). If this login time
has been exceeded, and the server has not replied back with a telnet login prompt, then the next
command is sent.

Command Time
Enter the maximum time allowed for each telnet command. If this command time has been exceeded,
and the server has not replied back with a telnet command prompt, then the next command is sent.

Command
Enter your telnet commands, 1 per line. Always enter the exit command on the last line. This field also
supports dynamic variables. Using dynamic variables, you can enter a command, which will be
dynamically resolved at runtime. example: cd /users/$%USERNAME%$

Example of Commands to enter
ls -lt
cd /user/test
./runTestScript.scr
exit

Custom Login
The Telnet(Adv) task always sends the username first, followed by the password. If your login method
is different, than the Telnet(Adv) task will fail. In this case, please use the following procedure to apply
a Custom login method. On the first line of the commands field, enter the String CUSTOMLOGIN^
(case important) followed by the number of commands you need for your custom login. Ex:
CUSTOMLOGIN^3 should be the first line if you have 3 login commands. Then enter the rest of the
commands like you normally would.

Example of Commands to enter for custom login
CUSTOMLOGIN^3
username

group
password
ls -lt
cd /user/test
./runTestScript.scr
exit

Unzip Archives

This task allows you to unzip files from a zip archive(s).

Source Directory
Enter the full path name of the directory, where your zip files exists. Note that the path is case sensitive
for unix Ftp servers.

Filename
Enter the name filter for the zip archives you wish to extract, using the following wildcard rules . This
field also supports dynamic variables. Using dynamic variables, you can select a file based on current
date/time.

Extract Directory
Enter the full path name of the directory, where you need to put the extracted files. Note that the path is
case sensitive on unix systems.

Place files in new subdirectory
If you select "None", no new subdirectory is created, within the Extract Directory.
If you select Date, a new subdirectory based on the date, is created within the Extract Directory. All files
are placed in this directory.
If you select Date, a new subdirectory based on date and time, is created within the Extract Directory.
All files are placed in this directory.

Url Monitor

This feature enables you to monitor web pages for changes. It can work with multiple web sites. Each
time this task runs, it updates a log file on your system, with the modified time stamp of each web page
it finds, within the web site. If a change is detected, it will download the file to a selected directory.
HTTPS downloads require additional SSL install files, which are available from our website.

Url to spider
Enter the full path of the URL's to monitor. You must include the protocol (i.e. http://). You can specify
multiple URL's, by separating then with a comma. Example - http://www.hiteksoftware.com,http://
www.espn.com. This field also supports dynamic variables.

Hyperlink Depth
Select the Hyperlink depth(D) required. If D=0, only the root Url is monitored. If D=1, direct links
(DL1) to the root Url are also monitored. If D=2, direct links(DL2) to each DL1 are also monitored, and
so on....
WARNING: Use D=1 to test. If you have a slow connection, and/or the web site has many large
files, this task could run for hours!!

Local Dir
Enter the full path of the local directory to place all the results. If a file is found to have been changed,
then it is downloaded to this directory.

Filename Filter
Leave this field blank if you want all files to be downloaded, or enter the name filter for the files you
wish to download using the following wildcard rules . This field also supports dynamic variables.
Using dynamic variables, you can select a file based on current date/time.
You can also select only specific sub folder(s), to be downloaded, by entering the sub folders relative
path. For the task to realize, that a sub folder filter is used, the filename filter has to include at least one
path separator '/'. Example: /test or /test/subfolder etc..
You can use multiple filters by separating them with ^. Example: test.htm^prod would download test.
htm, products.htm, produce.htm etc.. Please note that when you use multiple filters, only one of the
filters has to be satisfied, for the url to be downloaded.

Maintain Timestamp
Select this option, if you need the downloaded file, to have the same timestamp, as the file on the web
server.

Download Option

There is three options available:
1) Download always - This will overwrite the existing local file, irrespective of timestamp.
2) Download based on local file timestamp - If a local file exists in the download folder, a new file will
be downloaded, only if the timestamp of the file on the web server, is newer than that of the existing
local file.
3) Download based on archived url timestamp - Every time a file is downloaded by this task, its
timestamp on the web server is saved locally. If this option is selected, a new file is downloaded from
the web server, only if its timestamp is newer than the saved value.

Place files in new subdirectory
To regularly monitor certain URL's, you can save each download to a different directory, based on
current time/date. Select the "Create New Subdirectory" option, which best suits your download
frequency. A new subdirectory, based on current date or time, will be created. All downloaded files and
results will be placed in this subdirectory.

Proxy Parameters
If you are behind a firewall, enter the proxy settings. Your network administrator can provide you with
the proxy settings. You can also obtain the proxy settings from your web browser.

Variable Monitor

The Variable Monitor task is a special type of task which can be used in two ways:
1) If a variable criteria is met in this task, you can run another task.
2) The Variable Monitor task can also be embedded within a Chain task, and is useful for conditional
task processing. If you want to use this task in a chain for conditional processing, select 'None' as the
'Task To Run'. If the criteria is satisfied, then an exit code = -100 is thrown. Else, an exit code = 0 is
thrown.

Variable name
Select the variable you need to monitor from the list. For some variables like DATE, you need to
manually enter the format.

Variable value
Enter the value of the variable you want to monitor. This value will be dependent on the comparison
criteria you select.

Comparison criteria
Choose your comparison criteria. This will dictate how the actual value of the system variable is
compared to the variable value you entered.

For Integer comparisons, use: =, !=, , < . The values found will be converted to integers and compared
For String comparisons, use: equals, contains, starts with, ends with
For Date comparisons, use: Older than or Newer than. For Date comparisons, the Variable Value should
specify both the value and the field type (m=minutes, h=hours, d=days). Date comparison examples:
For '5 days' use: 5 d
For '3 hours' use: 3 h
For '30 minutes' use: 30 m

Task To Run
Select the desired task to run, if any of the selected criteria are met. If you want to use this task in a
chain for conditional processing, select 'None'. You can also select multiple tasks to run in sequence or
simultaneously. To run tasks in sequence, use taskTitle1|taskTitle2|taskTitle3. To run tasks
simultaneously, use taskTitle1&taskTitle2&taskTitle3.

There are 4 types of variables listed:
Task Variables: Task variables values are generated/updated when the tasks run. Example: Tasks exit
codes are stored as the following variable: TaskTitle::ExitCode
System Variables: Program system variables which are resolved when the current task runs, examples
are DATE, USERNAME etc..

Java Variables: Java variables, which are available to the Java Virtual Machine. You can get the value
of java variables from the Utilities menu / Java Variables
User Variables: Users can add their own variables via batch files, scripts or programs. Users can link
output from their own programs, to this program.

Web Downloads

This feature enables you to download web pages, from your local intranet, or from the internet. The
most common internet protocols http://, https://, & ftp:// can be downloaded. This feature will work with
most web pages, except web pages using frames. Please note that https downloads require additional
SSL install files, which are available from our website.

Download Url
Enter the full path of the URL to download (http://www.hiteksoftware.com). You must include the
protocol (i.e. http://).
This field also supports dynamic variables. Using dynamic variables, you can select a URL based on
current date.
Example: http://www.test.com/$%pp-yy%$.htm, will download http://www.test.com/07-02.htm

Many Ftp urls require username & password information to be sent in the url itself. The format may
vary, but is usually of the form: ftp://username:password@host.com/folder/file
To hide your password, enter the password in the password field of the dialog box. Use the following
format for the url:
ftp://username:$password$@host.com/folder/file
The string $password$ will be replaced by the value, in the password field of the dialog box.

Examples:
1) http://www.cnn.com
2) ftp://comp.com/test/test.dat
3) ftp://username:$password$@test.com/folder/test.zip

Parameters (optional)
This is an optional field. If you did not enter input parameters in your url field, you can enter the
parameter string here. You must separate each key=value pair by &
Example: name=joe&age=25&date=2/12/01
This field also supports dynamic variables. Example: name=$%USERNAME%$&age=25&date=$%
DATE::pp/dd/yy%$

Local Directory
Enter the full path of the local Directory to place the html file in.

Local Filename
Enter the required name of the downloaded file. Example test.htm. If you do not enter a name, a default

name of "TaskTitle.htm" is used. This field also supports dynamic variables. Using dynamic variables,
you can save the file to a customized name, based on date/time, or username, or other variable.

Maintain Timestamp
With this option selected, the download file will have the same timestamp, as the file on the web server.

Download Option
There are 3 download options:
1) Download always - This will overwrite the existing local file, irrespective of timestamp.
2) Download based on local file timestamp - If a local file exists in the download folder, a file will be
downloaded, only if the file on the web server, is newer than the existing local file.
3) Download based on archived url timestamp - Every time a file is downloaded by this task, the file
timestamp on the web server, is saved locally in a file. If this option is selected, a new file is downloaded
from the web server, only if its timestamp on the web server, is newer than the saved value.

Append to Filename
If you are regularly downloading a certain URL and wish to save each download to a different filename
based on current time/date or custom code you set, choose the append file option which best suits your
download frequency.

Proxy Parameters
If you are behind a firewall, enter the proxy settings. Your network administrator should be able to
provide your proxy settings or you may also be able to obtain them from your web browser.

Download Embedded Images
This option allows you to download embedded images within the html page. The image formats
supported are .jpg,.gif, .tif, .png, and .bmp. Only images in the same or child folder as the html page
will be downloaded.

Windows Command

This task is only available on Windows systems. This task allows you to run executable programs(.exe)
or batch files(.bat). The task launches a native windows application called WinCommand.exe.
WinCommand.exe will actually run your application, or batch file. This Windows Command Task
generally provides better results, for windows batch files, than the standard Command Task. Executable
programs (.exe) should perform similarly using, either the Command Task, or the Windows Command
Task.

Command Line
Enter the command line. If you want to launch an executable file, or batch file, enter the full path to the
file. Example:
c:\windows\notepad.exe
If the path to your executable file, or batch file includes spaces, enter the path to the file in quotes.
Example:
"c:\program files\mybat.bat"
You can enter a commandline parameter, to pass to your executable file, or batch file. You should enter
a space between the file path, and the parameter. Leave spaces between any subsequent parameters.
Example:
"c:\program files\mybat.bat" par1 par2

This field also supports dynamic variables. For example, to launch a batch file, and pass it the current
time, use:
c:\data\test.bat $%DATE::hh:mm:ss%$

Working Directory
The working directory is required for your program, or script, to run correctly. Use the full path to the
Working Directory. You do not need to enclose the working directory in quotes, even if the path has
spaces in it.

Environment Variables
Enter an array of strings. Each element of the array, defines a single environment variable setting. The
format for each environment variable is name=value. You should separate each name=value pair, by a
delimiter character. You can choose the delimiter to separate each element. The default delimiter is ^.
If any of your variable name=value pairs contains the ^ character, then you should set another character,
as your delimiter. The delimiter cannot be "=", or any other character, that appears in your name=value
pairs.
Example of correctly formatted environment variables, on windows systems:
PATH=c:\test;c:\test2;c:\test3^TEMP=c:\temp

This field also supports dynamic variables. For example, to launch a batch file and set the variable
'CUSTOM_DATE', use:
CUSTOM_DATE=$%DATE::Qqq dd, YY HH:mm:ss am_pm%$
This will set the variable CUSTOM_DATE in the batch file to: Aug 21, 2002 10:21:23 AM etc..

Termination Time
The termination time is the maximum time that your program can run. The task will terminate your
program, if it is still running, after the maximum allowed time. Enter a value = 0, if you do not want to
terminate your program. In this case, the task will wait indefinitely, for your task to finish.

Polling interval
While your program is running, the task continuously polls your program. The task will check if your
program has completed. It will obtain the Exit Code value, when the program exits. You can select the
polling interval (default = 15 seconds). The minimum interval is 1 second. We recommend using 15
seconds.

Zip Directories

The Zip Directories task allows you to Zip an entire directory, and its sub-tree to a single zip archive.
Each file in the directory is compressed, before being added to the zip archive.

Directory to Zip
Enter the full path name of the directory, where your source files exists. Note that the path is case
sensitive for unix Ftp servers.

Filename
Enter the name filter for the files you wish to copy using the following wildcard rules. This field also
supports dynamic variables. Using dynamic variables, you can select a file based on current date/time.

Include sub directories
Select this option, if you want to zip the entire sub directory tree, below the main directory.

Directory to place Zip Archive
Enter the full path name of the directory, where you need to put the newly created zip archive. Note that
the path is case sensitive on unix systems.

Name for Zip Archive
Enter the filename for zip archive. This field also supports dynamic variables. Using dynamic
variables, you can save the file, to a customized name based on date/time, or username, or other
variable.

Append to Filename
You can save each archive to a different filename, based on current time/date, or on custom code you
set.

Date Filter
If you need to filter files based on file modified date, select this option. For the between option, enter 2
values separated by '-' (2-4 etc..). Examples:
Older than 5 Minute, Newer than 2 Day, Between 3-5 Day, Between 1-4 Hour

Task Variables

Every task outputs values of certain variables. You can use these values in other tasks, or in the Variable Monitor task. You can view the
list of Task Variables using the 'Utilities' Menu - 'Task Variables' menu item.

Using task variables in text fields
The variable must be formatted as: $%TaskTitle::VariableName%$
Example: for command task with task title = Test
$%Test::ExitCode%$ = Exit code for latest run of this task
$%Test::ErrorMsg%$ = Error message for latest run of this task

Task Type Variable Name Variable Description
All Tasks LastTaskTitleRun Task title of last task run

All Tasks LastTaskTypeRun Task Type of last task run

All Tasks LastExitCode Exit Code of last task run

All Tasks TaskType::LastTaskRun Task title of last task run for each task type

All Tasks TaskTitle::ExitCode Task exit code value

All Tasks TaskTitle::LastRunEndTime Time last run finished

All Tasks TaskTitle::LastRunStartTime Time last run started

All Tasks TaskTitle::LastRunRunTime Duration of last run

Command TaskTitle::ErrorMsg
Task error message. This variable is BLANK unless an error is
detected during the task run. This variable is set to BLANK before
each run

Command TaskTitle::OutputMsg
Task output message. This variable is BLANK unless output is
detected during the task run. This variable is set to BLANK before
each run

WinCommand TaskTitle::ErrorMsg
Task error message. This variable is BLANK unless an error is
detected during the task run. This variable is set to BLANK before
each run

CopyFile TaskTitle::TotalFiles Number of files in directory

CopyFile TaskTitle::PassFilename Number of files passing filename filter check

CopyFile TaskTitle::PassDate Number of files passing date modified criteria

CopyFile TaskTitle::ForceCopy Number of older(or same) source files copied

CopyFile TaskTitle::SourceOlder
Number of source files older (or same date) than target files (i.e.
not copied)

CopyFile TaskTitle::CopyFailed Number of files failed to copy

CopyFile TaskTitle::DeleteFailed Number of files failed to delete after move/rename options

CopyFile TaskTitle::FilesCopied Number of files copied

DeleteFile TaskTitle::TotalFiles Number of files in directory

DeleteFile TaskTitle::PassFilename Number of files passing filename filter check

DeleteFile TaskTitle::PassDate Number of files passing date modified criteria

DeleteFile TaskTitle::FilesDeleted Number of files deleted

ZipDirs TaskTitle::TotalFiles Number of files in directory

ZipDirs TaskTitle::PassFilename Number of files passing filename filter check

ZipDirs TaskTitle::PassDate Number of files passing date modified criteria

ZipDirs TaskTitle::FilesZipped Number of files zipped

ZipDirs TaskTitle::ZipFilePath Zip file path

ZipDirs TaskTitle::ZipFileSize Zip file size

TextSearch TaskTitle::FilesSearched Number of files searched

TextSearch TaskTitle::FilesFound Number of files search term(s) were found in

TextSearch TaskTitle::TotalFound Total number of times search terms were found

TextSearch TaskTitle::ResultsFile Results filename

TextSearch TaskTitle::TotalTermsFound

Total number of search terms found. This variable is useful for
searches in single file. If you have X search terms, but only Y
terms were found in 1 file, then the value of this variable = Y. But
if, you have multiple files being searched, this value may be greater
than the number of search terms.

TextSearch TaskTitle::LastLineNumber
The last line number where a search term was found. Value is
1000000 if no search term is found.

Ftp TaskTitle::TotalFiles Number of files in directory

Ftp TaskTitle::LocBackup Total local files backed up

Ftp TaskTitle::FailLocBackup Total local files failed to back up

Ftp TaskTitle::RemBackup Total remote files backed up

Ftp TaskTitle::FailRemBackup Total remote files failed to back up

Ftp TaskTitle::FilesDeleted Total source files deleted

Ftp TaskTitle::DeleteFailed Total source files failed to delete

Ftp TaskTitle::FailRename Total temporary files failed to rename

Ftp TaskTitle::PassFilename Total files meeting filename criteria

Ftp TaskTitle::PassDate Total files meeting filename and date criteria

Ftp TaskTitle::PassNew Total files meetings newly modified files criteria

Ftp TaskTitle::FailedXfers Total failed transfers

Ftp TaskTitle::FilesXfered Total files transferred

FtpMonitor TaskTitle::SourceDir Remote Directory being monitored

FtpMonitor TaskTitle::DirChanged true if directory change is detected since last run, else false

FtpMonitor TaskTitle::FileFound Name of last file found that satisfies the monitoring criteria

FtpMonitor TaskTitle::FirstFileFound Name of first file found that satisfies the monitoring criteria

FtpMonitor TaskTitle::FileSize Size of file found that satisfies the monitoring criteria

FtpMonitor TaskTitle::FileDate Date of file found that satisfies the monitoring criteria

FtpMonitor TaskTitle::TotalFiles Total files in directory, if 'Total Files' criteria is selected

Ftp Monitor TaskTitle::PassFileName Number of files that pass the filename filter

Ftp Monitor TaskTitle::Filenames
Files that pass monitoring criteria. The format is #file1^#file2... so
that this variable can be directly used in other tasks filename field
(example copy/ftp/delete etc..)

Ping TaskTitle::LastResult Last result for this task

Ping TaskTitle::TestCount Total test count

Ping TaskTitle::UpCount Total successfull connections

Ping TaskTitle::UpPercent Percent uptime

Ping TaskTitle::LastRuntime Last run time

Telnet TaskTitle::Response1
The initial connection response from server + login prompt (All
task variables are reset to BLANK before task runs)

Telnet TaskTitle::Response2 password prompt

Telnet TaskTitle::Response3 Authentication response/welcome message

Telnet TaskTitle::Response4+
Response4, Response5 etc.. are the reply strings from the server for
each command you send

Telnet(Adv) TaskTitle::Response1
The initial connection response from server + login prompt (All
task variables are reset to BLANK before task runs)

Telnet(Adv) TaskTitle::Response2 password prompt

Telnet(Adv) TaskTitle::Response3 Authentication response/welcome message

Telnet(Adv) TaskTitle::Response4+
Response4, Response5 etc.. are the reply strings from the server for
each command you send

EmailBulk TaskTitle::Successful Number of Successful emails

EmailBulk TaskTitle::Failed Number of Failed emails

EmailBulk TaskTitle::Total Number of Total emails

EmailCheck TaskTitle::PassCrit1 Number of messages passing criteria 1

EmailCheck TaskTitle::PassCrit2 Number of messages passing criteria 2

EmailCheck TaskTitle::Messages Number of messages being downloaded

EmailCheck TaskTitle::Subject Subject for the last email downloaded

EmailCheck TaskTitle::From Sender for the last email downloaded

Database SQL TaskTitle::Rows Number of rows returned or updated

File Monitor TaskTitle::FileName Filename for the last file that satisfied the monitoring criteria

File Monitor TaskTitle::FirstFileName Filename for the first file that satisfied the monitoring criteria

File Monitor TaskTitle::FilePath Filepath for the file that satisfied the monitoring criteria

File Monitor TaskTitle::FileSize File size in bytes for the file that satisfied the monitoring criteria

File Monitor TaskTitle::FileDate File timestamp for the file that satisfied the monitoring criteria

File Monitor TaskTitle::TotalFiles Total files in directory, if total files criteria is selected

File Monitor TaskTitle::PassFileName Number of files that pass the filename filter

File Monitor TaskTitle::Filenames
Files that pass monitoring criteria. The format is #file1^#file2... so
that this variable can be directly used in other tasks filename field
(example copy/ftp/delete etc..)

Dir Monitor TaskTitle::Filenames
Files that pass monitoring criteria. The format is #file1^#file2... so
that this variable can be directly used in other tasks filename field
(example copy/ftp/delete etc..)

Dir Monitor TaskTitle::ModifiedObjects Total modified objects (directories + files) in directory tree

Dir Monitor TaskTitle::TotalObjects Total objects (directories + files) in directory tree

Dir Monitor TaskTitle::FileName Last filename that passes monitoring criteria.

Dir Monitor TaskTitle::FirstFileName First filename that passes monitoring criteria.

Ftp Command TaskTitle::ResponseX
Response1, Response2 etc.. are the reply strings from the ftp server
for each command you send

Chain TaskTitle::LastRunStepTitle Latest step task title run in this chain task

Chain TaskTitle::LastRunStepType Latest step task type run in this chain task

Chain TaskType::LastRunStepTitle Latest step task title run in any chain task

Chain TaskType::LastRunStepType Latest step task type run in any chain task

Web TaskTitle::FileSize File size as reported by web server

Web TaskTitle::TotalBytes Total bytes downloaded

Web TaskTitle::ContentType File content type

Web TaskTitle::ContentEncoding File content encoding

Web TaskTitle:: LastModifiedHeader value of the last-modified header field

Web TaskTitle:: DateHeader value of the date header field

Web TaskTitle:: ExpirationHeader value of the expires header field

LogFile Monitor TaskTitle::TotalAlerts Total new alerts detected in this run

LogFile Monitor TaskTitle::AlertLines
Variable contains all new alert lines. Use the File variable task to
output lines to file.

LogFile Monitor TaskTitle::LastAlertTime Last alert time

System Variables

Many task fields support variable entries. This program has some coded system related variables, which
you can use, in these task fields.

Using variables in text fields
The variable must be formatted as: $%Variable_Name::Option1::Option2..%$
Options may only be required by some Variables.
examples: $%DATE::hh:mm;yyyy%$ or $%USERNAME%$

The following is the list of System Variables

1) DATE
You can specify the current date using the following format
$%DATE::dd/pp/yy hh:mm:ss AMPM%$

You can also choose any date, time, or date/time separators like /, _, -, or : etc...

YY = 4 digit year will be output (2001 etc..)
yy = 2 digit year will be output (00-99)
pp = 2 digit month will be output (01-12)
ppx = 1 or 2 digit month will be output(1-12)
qqq = 3 character month will be output (jan-dec)
QQQ = 3 character month will be output (JAN-DEC)
Qqq = 3 character month will be output (Jan-Dec)
dd = 2 digit date will be output (01-31)
ddx = 1 or 2 digit date will be output(1-31)
HH = 2 digit hour based on 12 hour clock will be output (01-12) (should generally be used with am_pm)
HHx = 1 or 2 digit hour based on 12 hour clock will be output(1-12)
hh = 2 digit hour based on 24 hour clock will be output (00-23)
hhx = 1 or 2 digit hour based on 24 hour clock will be output (0-23)
mm = 2 digit minute will be output (00-59)
mmx = 1 or 2 digit minute will be output (0-59)
ss = 2 digit seconds will be output (00-59)
am_pm = AM is output for AM hours, PM is output for PM hours
wy = 2 digit week of the year
wyx = 1 or 2 digit week of the year
dy = 3 digit day of the year
dyx = 1,2, or 3 digit day of the year
dw = day of the week (1-7) (country dependent, ex: 1 = sunday in the US, and 1 = monday in France)

wm = week of the month (1-5)
dwm = day of week in the month (1-5)

Examples: (for date/time = June 21st, 2005, 3:45:30 PM)
$%DATE::dd-pp-YY%$ = 21-06-2005
$%DATE::dd-pp1-yy%$ = 21-6-05
$%DATE::qqq/dd/yy_hh:mm:ss%$ = jun/21/05_15:45:30
$%DATE::Qqq dd, YY, HH:mm am_pm%$ = Jun 21, 2005, 03:45 PM

2) DATEADD
This variable returns the value of a single time field (date, hour, minute etc..), after adding (or
subtracting) days/hours etc.. from the current time:
$%DATEADD::dd::X%$
where X is the number to add. For next day, use 1, for previous day/hr etc.. use -1.

Examples: (for date/time = June 21st, 2005, 3:45:30 PM)
$%DATEADD::dd::1%$ = 22
$%DATEADD::dd::-1%$ = 20
$%DATEADD::hh::1%$ = 16
$%DATEADD::hh::-1%$ = 14
$%DATEADD::mm::1%$ = 46
$%DATEADD::mm::-1%$ = 44

Notes:
1) You can only add or subtract and recieve one field at a time
2) Only numerical date / time values are supported. i.e. days of week (mon, tue etc..) or months (jan, feb
etc..) are not supported.
3) You cannot embed a DATEADD variable within a DATE variable. You have to use all variables in
sequence.
Example: If you want current month and date, but require previous hour, in the format month-date_hr,
you would use
$%DATE::pp-dd_%$$%DATEADD::hh::-1%$ = 06-21_14

2A) DATEADDX
This variable returns a formatted date/time string, after adding (or subtracting) days/hours etc.. from the
current time:
$%DATEADDX::Format::dd::X%$
where X is the number to add. For next day/hour etc., use 1, for previous day/hour etc.. use -1. Format
is the date/time format that you need the result to be returned in.

This variable allows user to add date/hour/minute to current time intelligently. Ex: adding a day to
12/31/03, rolls over to 01/01/04, not to 12/32/03

Examples: (for date/time = June 21st, 2005, 3:45:30 PM)
$%DATEADDX::YY-pp-dd::dd::1%$ = 2004-06-22
$%DATEADDX::YY-pp-dd_hh-mm::hh::-1%$ = 2004-06-21_14-45
$%DATEADDX::YY-pp-dd_hh-mm::hh::1%$ = 2004-06-21_16-45
$%DATEADDX::YY-pp-dd_hh-mm::mm::1%$ = 2004-06-21_16-46
$%DATEADDX::YY-pp-dd_hh-mm::mm::-1%$ = 2004-06-21_16-44

Notes:
1) You can only add or subtract one field at a time
2) Only numerical date / time values are supported. i.e. days of week (mon, tue etc..) or months (jan, feb
etc..) are not supported.

3) DATEMONTH
This variable allows you to get the last day of the previous month, or first Sunday of next month etc.. It
returns a formatted date/time string. The format required is:
$%DATEMONTH::format::month_offset::day_val::X%$
format is the date/time format that you need the result to be returned in
month_offset = 0 for current month, 1 for next month, -1 for previous month
day_val = sun, mon, tue, wed, thu, fri, sat to specify day of week. Use 'day' to specify date of the month.
X = week of month (1-5) or day of month (1-31). To specify the last week of the month, use -1. To
specify the last date of the month, use -1.

Examples: (for month = April, 2004)
To get first Sunday of this month:
$% DATEMONTH::YY-Qqq-dd::0::sun::1%$ = 2004-Apr-04
To get last Sunday of this month:
$% DATEMONTH::YY-Qqq-dd::0::sun::-1%$ = 2004-Apr-25
To get first Monday of next month:
$% DATEMONTH::YY-Qqq-dd::1::mon::1%$ = 2004-May-03
To get last Monday of previous month:
$% DATEMONTH::YY-Qqq-dd::-1::mon::-1%$ = 2004-Mar-29
To get last day of previous month:
$% DATEMONTH::YY-Qqq-dd::-1::day::-1%$ = 2004-Mar-31

4) FILE
This variable outputs information on file size, date or can parse lines from the file into the variable. This
is useful if you need to monitor files for certain strings etc.. This variable can be used in the 'File
Variable' task, to process text in files, and output results to new files.

$%FILE::SIZE::[file_path]%$
$%FILE::DATE::[format]::[file_path]%$
$%FILE::LINE::FIRST::[file_path]%$

$%FILE::LINE::LAST::[file_path]%$
$%FILE::LINE::MID::[start_line]::[end_line]::[file_path]%$
$%FILE::LINECONTAINS::FIRST::[string]::[file_path]%$
$%FILE::LINECONTAINS::LAST::[string]::[file_path]%$
$%FILE::LINECONTAINS::ALL::[string]::[file_path]%$
$%FILE::LINENUMCONTAINS::FIRST::[string]::[file_path]%$
$%FILE::LINENUMCONTAINS::LAST::[string]::[file_path]%$
$%FILE::LINESAFTER::FIRST/LAST::[string]::[offset]::[file_path]%$
$%FILE::LINESBEFORE::FIRST/LAST::[string]::[offset]::[file_path]%$

Examples:
1) $%FILE::SIZE::c:\temp\test.txt%$
will output the size of the file in bytes

2) $%FILE::DATE::qqq-dd-yy_hh:mm:ss::c:\temp\test.txt%$
will output the last modified time of the file, in the date/time format you specify. Please see the DATE
variable above, for details on how to format the date. example: if June 21,2002, 3:45 pm was the last
modified time of the file c:\temp\test.txt, this variable will output: jun-21-02_15:45:30

3) $%FILE::LINE::FIRST::c:\temp\test.txt%$
will output the first line in the file c:\temp\test.txt

4) $%FILE::LINE::LAST::c:\temp\test.txt%$
will output the last line in the file c:\temp\test.txt

4) $%FILE::LINE::MID::5::90::c:\temp\test.txt%$
will output the lines 5-90 in the file c:\temp\test.txt. If there are only 65 lines in the file, it will output
lines 5-65.

6) $%FILE::LINECONTAINS::FIRST::error alert::c:\temp\test.txt%$
will output the first line in test.txt, that contains the string 'error alert'. It will return an empty string, if
the 'error alert' is not found.

7) $%FILE::LINECONTAINS::LAST::error alert::c:\temp\test.txt%$
will output the last line in test.txt, that contains the string 'error alert'. It will return an empty string, if
the 'error alert' is not found.

8) $%FILE::LINECONTAINS::ALL::error alert::c:\temp\test.txt%$
will output all the lines in test.txt, that contains the string 'error alert'. It will return an empty string, if
the 'error alert' is not found in any line.

9) $%FILE::LINENUMCONTAINS::FIRST::error alert::c:\temp\test.txt%$

This variable will output the line number of the first line, that contains the string 'error alert'. It will
return 1000000, if the string is not found.

10) $%FILE::LINENUMCONTAINS::LAST::error alert::c:\temp\test.txt%$
This variable will output the line number of the last line, that contains the string 'error alert'. It will
return 1000000, if the string is not found.

11) $$%FILE::LINESAFTER::FIRST/LAST::[string]::[offset]::[file_path]%$
This variable will output all lines, after the line that contains the String [string] .
Use FIRST to output all lines, after the first line containing the [string]
Use LAST to output all lines, after the last line containing the [string]
use [offset] = 0 , to include the line containing the [string], use [offset] = 1, to start at next line, etc..
examples:
$$%FILE::LINESAFTER::FIRST::error::0::c:\temp\test.txt%$ (will include the line containing the
string 'error')
$$%FILE::LINESAFTER::LAST::error::1::c:\temp\test.txt%$ (will not include the line containing the
string 'error')

12) $$%FILE::LINESBEFORE::FIRST/LAST::[string]::[offset]::[file_path]%$
This variable will output all lines, before the line that contains the String [string] .
Use FIRST to output all lines, before the first line containing the [string]
Use LAST to output all lines, before the last line containing the [string]
use [offset] = 0 , to include the line containing the [string], use [offset] = 1, to end at previous line, etc..
examples:
$$%FILE::LINESBEFORE::FIRST::error::0::c:\temp\test.txt%$ (will include the line containing the
string 'error')
$$%FILE::LINESBEFORE::LAST::error::1::c:\temp\test.txt%$ (will not include the line containing
the string 'error')

5) Other Variables

USERNAME
This variable outputs the value of the current user
example: if your username is 'john'
$%USERNAME%$ =john

USERHOME
This variable outputs the value of the current users home directory
example: if your username is 'john', your home directory on win 2000 would be
$%USERHOME%$ =c:\documents and settings\users\john

TEMPDIR
This variable outputs the current value of the temp folder
$%TEMPDIR%$ =c:\temp

OSNAME
This variable outputs name of the operating system
example: on Windows 2000
$%OSNAME%$ =Windows 2000

OSVERSION
This variable outputs the version of the operating system
example: on Windows 2000
$%OSVERSION%$ =5.0

IPADDRESS
This variable outputs the computers IP address
example: if your systems IP address is 192.168.0.1
$%IPADDRESS%$ =192.168.0.1

SYSNAME
This variable outputs the computer name on the network
example: if your computer name is Win1
$%SYSNAME%$ =Win1

User Defined Variables

This feature provides the commandline code to set an existing variable, add a new variable, or get the
value of a variable. You can use this code, from an external program, script, batch file, or commandline
(command prompt in windows or terminal in unix). The commandline and working directory required
to set the variable, will be automatically generated in the text fields. You can use the "Copy to
Clipboard" feature to copy these fields to clipboard for use in your scripts or programs.

A) Setting your own variables for the program (Automize, AbleFtp etc..) to recognize

From the commandline, via your batch files / scripts etc, first set the program install folder as the current
directory
cd install_folder (i.e. cd ..\Automize or cd ..\AbleFtp etc..)

on windows, use:
jre\bin\java.exe -cp .;inputs;jclasses.jar UserVariable set variable_name variable_value

IMPORTANT: variable_name cannot include any spaces in it

on Unix/MacOSX, use:
java -cp .:inputs:jclasses.jar UserVariable set name value

where variable_name = variable name, and variable_value = variable value

B) Getting User variable values for use in your scripts or batch files
From the commandline, via your batch files / scripts etc,
first set the program install folder as the current directory
cd install_folder

on windows, use:
jre\bin\java.exe -cp .;inputs;jclasses.jar UserVariable get variable_name
jre\bin\java.exe -cp .;inputs;jclasses.jar UserVariable get variable_name c:\test\test.txt (outputs the
variable to the file test.txt)

IMPORTANT: variable_name cannot include any spaces in it

on Unix/MacOSX, use:

java -cp .:inputs:jclasses.jar UserVariable get variable_name
java -cp .:inputs:jclasses.jar UserVariable get variable_name /home/test.txt (will output the variable to
the file test.txt)

where variable_name = variable name, and variable_value = variable value

Return Value:

The variable value will be returned as a string value in the system output stream. You should add code
in your batch, script, or program, to read this value.

Also, if the variable is an integer, the exit code of the command above, is the integer value of the
variable.

If the variable is not an integer, the exit code of the command above = -1001.

How To's

1. How to send email notification if task fails
2. How to send email notification depending on whether task fails or passes

1. How to send email notification if task fails

Generally, if your task exit code = 0 or <0, then the task has passed. If exit code is 0, then task generally
has failed. Use the Email Notification feature, from the Settings menu, to email yourself if a task fails.

2. How to send email notification depending on whether task fails or passes

Generally, if your task exit code is 0 or <0, then the task has passed. If exit code is 0, then task generally
has failed.

1. Setup your desired task and test it.
2. Setup two email tasks to yourself. One with the failure notification message, and another with success
notification message. Test your email tasks.
3. Setup a chain task with 3 steps.
 1st step should be your desired task.
 2nd step in chain should be the email failure notification.
 3rd step should be email success notification.
4. For your desired task in the 1st step, in the chain options, set the criteria:
If Exit Code < 1, Go to Step 3.
5. For the email failure notification task in step 2, Select the Check Box "Always stop chain at this
Step".
6. If your task passes, the exit code is 0 or less, the chain will move to Step 2. A success notification
email will be sent, and chain will stop here.
6. If your task fails, the exit code is 0. The chain will move to step 3, and failure notification email will
be sent.

Windows specific tutorials

Windows Batch Files
Windows Batch File Examples
Backing up using XCopy on Windows

Windows Batch Files

Using Batch Files is a very powerful way to enhance your productivity.
Batch files are simple text files with commands.
Each command has to be entered on a new line followed by a carriage return.
The Text file is saved as ‘xxxx.bat’ to generate a batch file. . The maximum length of the filename is 8
characters.

Create a Simple Batch file
Open up a new text document using notepad.
Type in the Following command on the first line: Start notepad
From the ‘File Menu’ select ‘Save As’
In the File Save Dialog Box, select ‘All Files (*.*)’ as the File Type.
Enter the name of the batch file to save as. Ex: Test.bat

Running a Batch file
To run a batch file, double click on its icon. For example, the Simple batch file code above, would
launch notepad.

Passing Command line parameters to a batch file
The parameters are entered after the full path to the batch file. There is a space between parameters.
Example: c:\mybat.bat command1 command2 command3

Using Command line parameters in a batch file
Within the batch file, use %1 to refer to the first command line parameter (%2 for the second parameter
etc.). This parameter is passed while launching the batch file.
Ex: To launch a batch file, and tell it to copy the file "c:\test.txt" to drive a:, we would do the following:
1) Launch your batch file(c:\mybat.bat) using: c:\mybat.bat c:\test.txt
2) In mybat.bat, use the following code: Copy %1 a:

Concept of Start/Current directory
If you plan to use relative paths in your batch file, it should know its current directory.
For example, to delete all text files in the current directory, we would use a batch file with the following

code: DEL *.txt
This would work, if you run the batch file, by clicking on its icon.
However, if you used another batch file, located in a different directory, to run this batch file, then this
code will not work. You need to enter the full path: DEL c:\junk*.txt

Batch File Examples

In the examples below, Filepath1, Filepath2 refer to the full path of the executable files.
Ex: c:\program files\programs.exe or c:\windows\notepad.exe

The syntax for the Start command varies between Win95 and WinNT families.

Example 1: Starting programs simultaneously
Start Filepath1
Start Filepath2

Example 2: Starting 2nd program after 1st finishes
Start /w Filepath1
Start /w Filepath2
The /w switch tells the windows to wait for the programs to finish.

Example 3: Running program with command line arguments
Start /w Filepath1 Commandline

You need to enter the commandline arguments after the Filepath1. A blank space is required after the
Filepath1 and the first commandline argument. A blank space is also required between commandline
arguments if you need to specify more than one argument.

Useful DOS Commands for Batch Files
From a MS-DOS window, type in 'command /?' for details on the commands. Some of these commands
may not be available to you, depending on your system. For some commands like Ftp, type ‘ftp’ in a
dos window. At the subsequent prompt, type ‘help’.

Commands which may be of use to you
attrib, break, call, command, copy, chcp, chdir (cd), chkdsk, cls, date, debug, del, deltree, dir, diskcopy,
doskey, defrag, drvspace, dir, echo, edit, erase, exit, expand, fc, find, for, format, fdisk, ftp, goto, if,
label, mem, mkdir (md), mode, more, move, netstat, net, path, pause, ping, prompt, rem, rename (ren),
rmdir (rd), set, shift, sort, start, subst, time, type, verify, vol, xcopy

Backing up using XCopy
MS-DOS comes with a xcopy utility, which you can use, to backup files, or directories. The exact

syntax varies with operating systems. Win 95, Win NT, and Win 2000 pro, have different syntax for
XCopy. From a command window use xcopy /? for more information.

For example, to backup the c:\junk directory and all its sub directories to a:, and replace older files with
newer files, and overwrite existing files without prompting, use
xcopy c:\junk a: /D /E /Y (the /Y switch may or may not be used depending on your system)

Back to Index

Introduction

The CommandLine Module (CLM) allows a user to:
1) Control the scheduler engine on a remote system
2) Allow a programmer to control the scheduler tasks and schedules from their own programs, scripts or
batch files

The CLM is an optional addon to our regular programs. It is a 30 day free trial and requires a separate
license and registration code. The CLM is installed along with the main software.

Back to Index

Using the CommandLine Module

You can control the scheduler engine using the Commandline Module (CLM) via Telnet (or rlogin, ssh
etc..).

Windows:
1. Open a DOS command window.
2. Telnet to the remote system where the program is installed
3. 'cd' to the main install folder (Example: cd "c:\program files\hiteksoftware\automize" or cd "c:
\program files\Automize")
4. The main install folder includes the following file: clm.bat
5. Use following command to verify that clm is setup correctly: clm ? . If clm is setup correctly, you
will get a listing of all commands.

NOTE: You may get the following error: "The system cannot find the path specified". This means that
you do not have the Java machine installed into the main install folder. You probably used the zip
installer and are using a 'java' machine which is in your system path. In this case you will have to edit
'clm.bat' and replace the commandline:
jre\bin\java -cp .;jclasses.jar;inputs CLM %*
with:
java -cp .;jclasses.jar;inputs CLM %*

Unix & MacOSX:
1. Open a Terminal window.
2. Telnet to the remote system where the program is installed
3. 'cd' to the main install folder
4. The main install folder includes the following file: clm
5. Run the command: chmod +x clm
6. Use following command to verify that clm is setup correctly: ./clm ? . If clm is setup correctly, you
will get a listing of all commands.
7. You can add the appropriate shell header line to the file 'clm' to avoid having to type in './' everytime
you run a command

NOTE: You may get a "command not found" error. This means that you do not have 'java' in your
system path. You probably used the Install including 'JVM' and have the Java machine (jre folder)
installed into the main install folder. In this case, you will have to edit 'clm' and replace the
commandline.
java -cp .:jclasses.jar:inputs CLM $*
with:
jre/bin/java -cp .:jclasses.jar:inputs CLM $*

Back to Index

Usage: clm command[::par1][::par2]...

Command List
? - Displays this command reference page
?::add - Help information on how to add a new task or modify a task
?::addx - Help information on how to add a new schedule or modify a schedule
?::pars - Help information on task parameters 1-50 for each task type
?::type - Help information on TaskTypes used
?::user - Help information on various user settings
init::program_name - program_name = Automize, AbleFtp, or JaSFtp etc (Case sensitive). This
command is only required if you are using the clm for the first time, and also have not used the user
interface yet
start - Starts scheduler engine
stop - Stops scheduler engine
status - Checks if scheduler engine is running
list - Displays Task List
list::n - Displays task data for task 'n' in a format suitable for editing
listx - Displays Schedule List
list::n - Displays schedule data for task 'n' in a format suitable for editing
run::n - runs task number 'n' from task list.
run::taskTitle - runs 'taskTitle' from task list.
add::taskType|*|taskTitle|*|Par1|*|Par2|*|....|*|…. - adds a new task to task list
addx::taskType|*|taskTitle|*|NextRun|*|....|*|… - adds a new schedule to schedule list
mod::n::taskType|*|taskTitle|*|Par1|*|Par2|*|....|*|….… - modifies task data for task 'n'
modx::n::taskType|*|taskTitle|*|NextRun|*|....|*|… - modifies schedule data for schedule 'n'
del::n - deletes task number 'n' from task list
delx::n - deletes schedule number 'n' from schedule list
sch::n - schedules task 'n' in schedule list
sus::n - suspends task 'n' in schedule list
out - Displays output log
act - Displays activity log
err - Displays debug log
task::taskTitle - Displays the Tasklog for taskTitle
listUser - Displays a list of user settings
getUser::name - returns the value of user 'setting'
setUser::name::value - sets the user setting value
listVar - Displays a list of user variables
getVar::variable_name - returns the value of user variable
setVar::value_to_set::variable_name - sets the user variable value
syncList - Displays a list of synchronization profiles
syncDis::profile - Displays the settings for the synchronization 'profile'

syncAdd::profile::taskList::option::waitTime::afterWait - Adds a new profile or modifies
synchronization profile data if profile exists.
syncDel::profile - Deletes the synchronization profile
emailList - Displays a list of email server profiles
emailDis::profile - Displays the smtp server settings for the email 'profile'
emailAdd::profile::host::port::emailAddress::senderName::authenticationType::popServer::user::pwd -
Adds a new profile or modifies email profile data if profile exists.
emailDel::profile - Deletes the email profile
emailNotifyList - Displays a list of email notification profiles
emailNotifyDis::profile - Displays the email notification settings for this profile
emailNotifyAdd::profile::true/false::notificationEmail::"crit"::exitCodeValue - Adds a new email
notification profile or modifies profile data if profile exists. Example: to send notification email if task
exits with exit code 0, use: clm emailNotifyAdd::true::me@test.com::"="::0
emailNotifyDel::profile - Deletes this email notification profile
backupDir - Displays the last backup directory
backup::dir_path - backup data to dir_path
backup::default - backup data to last backup directory
restore::dir_path - restores data from dir_path
restore::default - restores data from last backup directory
registerSched::program::code - Registers & unlocks the scheduler engine for specific 'program' using the
registration 'code'. program = Automize or AbleFtp or JaSFtp etc..
registerCLM::code - Registers & unlocks this CommandLine Module using 'code'

NOTE: n is 0 based (i.e. first task in task or schedule list has index = 0)
More CLM help information is available in the user interface help file.

Back to Index

Modifying a Task
1. Get a listing of all tasks using: clm list
2. Display the desired task 'n' in a format suitable for listing using: clm list::n
3. Usage: clm "mod::n::taskType|*|taskTitle|*|Par1|*|Par2|*|....|*|Par10….."
4. NOTE: Task list starts at index 0. If you have 10 tasks, first task is 0 and last task is 9
5. taskTypes and parameters can be obtained using: clm ?::pars

Adding a Task
Usage: add::taskType|*|taskTitle|*|Par1|*|Par2|*|....|*|Par10….
Another option is to duplicate an existing task using: clm copy::n and then modify the parameters.

Par1-Par50
These parameters are dependent on the task. These parameters may also change with versions, if more
features are added to a task. These parameters are exactly in the same sequence in the task table of the
user interface. If all 50 parameters are not used, they should be left blank. However, correct number
of |*| are required.

You can also Manage your tasks on a remote machine using the user interface itself in conjunction with
this CLM and an ftp client. See the help files on CLM for details.

Back to Index

Task parameters - updated for Version 6.x
These parameters are dependent on the task. These parameters may also change with versions, if more
features are added to a task. These parameters are exactly in the same sequence in the task table of the
user interface. If all 50 parameters are not used, they should be left blank. However, the correct
number of |*| are required when used in the CLM.

Command and Windows Command
Parameter1 = commandline
Parameter2 = working directory
Parameter3 = polling interval in seconds
Parameter4 = terminate time in minutes
Parameter5 = environment parameters
Parameter6 = environment parameters delimiter

Copy Files
Parameter1 = source directory
Parameter2 = target directory
Parameter3 = filename
Parameter4 = append to filename (None, Date , Date/Time or custom code)
Parameter5 = include subdirectory option? (true/false)
Parameter6 = create new subdirectory (None, Date, Date/Time)
Parameter7 = date based copy? (true/false)
Parameter8 = older than/newer than
Parameter9 = time (integer number)
Parameter10 = Minute/Hour/Day
Parameter11 = ignore file timestamp? (true/false)
Parameter12 = rename filename
Parameter13 = copy/move/rename

Zip Directories
Parameter1 = source directory
Parameter2 = target directory
Parameter3 = filename
Parameter4 = append to filename (None, Date , Date/Time or custom code)
Parameter5 = include subdirectory option? (true/false)
Parameter6 = create new subdirectory (No, Date, Date/Time)
Parameter7 = date based zip? (true/false)
Parameter8 = older than/newer than
Parameter9 = time (integer number)

Parameter10 = Minute/Hour/Day
Parameter11 = path type

Delete Files
Parameter1 = source directory
Parameter2 = filename
Parameter3 = date based delete?(true/false)
Parameter4 = older than/newer than
Parameter5 = time (integer number)
Parameter6 = Minute/Hour/Day
Parameter7 = delete subdirectories(true/false)
Parameter8 = delete empty subdirectories(true/false)

Text Search
Parameter1 = source directory
Parameter2 = filename
Parameter3 = search term(s)
Parameter4 = search term separator
Parameter5 = surrounding lines to append to results file
Parameter6 = case sensitive search? (true/false)
Parameter7 = results directory
Parameter8 = results filename
Parameter9 = append to results filename (None, Date , Date/Time or custom code)
Parameter10 = replace? (true/false)
Parameter11 = replace term(s)
Parameter12 = include directories (true/false)

Ping
Parameter1 = host
Parameter2 = port

Telnet
Parameter1 = host
Parameter2 = port
Parameter3 = delay time between commands in seconds
Parameter4 = commands separated by *EOL* (Example: username*EOL*password*EOL*ls -
lt*EOL*exit)

Telnet(Adv)
Parameter1 = host
Parameter2 = port
Parameter3 = username

Parameter4 = password
Parameter5 = maximum login time (seconds)
Parameter6 = login prompt (typically :)
Parameter7 = maximum command time (minutes)
Parameter8 = polling interval for each command (seconds)
Parameter9 = telnet prompt ($, % or etc..)
Parameter10 = prompt characters, default = 10
Parameter11 = commands separated by *EOL* (Example: username*EOL*password*EOL*ls -
lt*EOL*exit)

Ftp
Parameter1 = remote directory
Parameter2 = local directory
Parameter3 = filename (based on wildcards, see help for details)
Parameter4 = Ascii/Binary
Parameter5 = ftp option (Put File(s)/Get File(s)/Delete File(s)
Parameter6 = append to filename (None, Date or Date/Time)
Parameter7 = log transfer? (true/false)
Parameter8 = transfer modified files only? (true/false)
Parameter9 = include subdirectories? (true/false)
Parameter10 = ftp profile name
Parameter11 = transfer based on modified date? (true/false)
Parameter12 = date value
Parameter13 = delete source file after transfer? (true/false)
Parameter14 = transfer with temporary extension? (true/false)
Parameter15 = temporary extension (ex: .tmp)
Parameter16 = backup local file? (true/false)
Parameter17 = local backup directory
Parameter18 = backup remote file? (true/false)
Parameter19 = remote backup directory
Parameter20 = maintain timestamp (true/false)
Parameter21 = transfer modified source files using Ftp log? (true/false)
Parameter22 = comparison criteria (newer than/ older than)
Parameter23 = period type (Day/Hour/Minute)

Ftp Monitor
Parameter1 = remote directory
Parameter2 = filename
Parameter3 = file exists check (true/false)
Parameter4 = file length check (true/false)
Parameter5 = ftp length option (greater than/less than)
Parameter6 = file length value in kb
Parameter7 = file date check (true/false)

Parameter8 = file date option (newer than/older than)
Parameter9 = file date value
Parameter10 = file date option (minute/hour/day)
Parameter11 = file totals check (true/false)
Parameter12 = file totals option (greater than/less than)
Parameter13 = file totals value
Parameter14 = Run task if any change is detected (true/false)
Parameter15 = Task to run (tasktitle)
Parameter16 = Ftp profile name

Ftp Commands
Parameter1 = host
Parameter2 = port
Parameter3 = password
Parameter4 = commands (Each Command should be separated by *EOL*, Ex: user test*EOL*pass
mypwd*EOL*PWD)

Email
Parameter1 = recipients (format = To:email1,[Cc:email2,Bcc:email3,Reply-To:email4]
Parameter2 = subject
Parameter3 = attachments (format = filepath1,filepath2)
Parameter4 = message (newlines separated by *EOL*, Ex: this is a *EOL* new line)
Parameter5 = email profile name
Parameter6 = append to attachment (None, Date or Date/Time)
Parameter7 = headers

Bulk Email
Parameter1 = recipient list file path
Parameter2 = subject
Parameter3 = attachments (format = filepath1,filepath2)
Parameter4 = message (newlines separated by *EOL*, Ex: this is a *EOL* new line)
Parameter5 = email profile name
Parameter6 = append to attachment (None, Date or Date/Time)
Parameter7 = delay
Parameter8 = headers

Check Email
Parameter1 = criteria1 (date/sender/subject)
Parameter2 = option1 (newer than X days/older than X days/newer than X hours/older than X hours/
equals/contains/starts with/ends with)
Parameter3 = value1
Parameter4 = criteria2 (date/sender/subject)
Parameter5 = option2 (newer than X days/older than X days/newer than X hours/older than X hours/

equals/contains/starts with/ends with)
Parameter6 = value2
Parameter7 = and/or
Parameter8 = mail folder path
Parameter9 = append to filename (None, Date or Date/Time)
Parameter10 = server type (POP3/IMAP)
Parameter11 = host
Parameter12 = port
Parameter13 = user
Parameter14 = password
Parameter15 = delete message

Web
Parameter1 = download URL
Parameter2 = local directory
Parameter3 = filename
Parameter4 = append to filename (None, Date or Date/Time)
Parameter5 = authentication required (true/false)
Parameter6 = host
Parameter7 = port
Parameter8 = user
Parameter9 = password
Parameter10 = download images? (true/false)
Parameter11 = parameters
Parameter12 = file date check (true/false)
Parameter13 = file date criteria (greater than / less than etc..)
Parameter14 = date value
Parameter15 = date type (minute/hour/day)
Parameter16 = maintain timestamp (true/false)
Parameter17 = download option (Download always/Download based on local file
timestamp/ Download based on archived url timestamp)

Url Monitor
Parameter1 = url to monitor
Parameter2 = spider depth
Parameter3 = local directory
Parameter4 = place files in subdirectory (No, Date or Date/Time)
Parameter5 = authentication required (true/false)
Parameter6 = host
Parameter7 = port
Parameter8 = user
Parameter9 = password
Parameter10 = filename

Parameter11 = download option
Parameter12 = maintain timestamp (true/false)

Database SQL
Parameter1 = sql statement
Parameter2 = results directory
Parameter3 = results filename
Parameter4 = append to filename (None, Date or Date/Time)
Parameter5 = driver class name
Parameter6 = database url
Parameter7 = authentication required (true/false)
Parameter8 = username
Parameter9 = password

File Monitor
Parameter1 = directory
Parameter2 = filename filter
Parameter3 = file exists? (true/false)
Parameter4 = file length check? (true/false)
Parameter5 = greater than/less than
Parameter6 = size in kb (integer number)
Parameter7 = file date check? (true/false)
Parameter8 = older than/newer than
Parameter9 = time (integer number)
Parameter10 = Minute/Hour/Day
Parameter11 = total files check? (true/false)
Parameter12 = greater than/less than
Parameter13 = number of files (integer number)
Parameter14 = Task to Run (must be valid taskname in task table)

Directory Monitor
Parameter1 = Directory to monitor
Parameter2 = Filename filter
Parameter3 = include subdirectories (true/false)
Parameter4 = Task to Run (must be valid taskname in task table)

Directory Change
Parameter1 = Directory to monitor
Parameter2 = maximum wait time in minutes (integer number)
Parameter3 = polling interval in seconds (integer number)
Parameter4 = Task to Run (must be valid taskname in task table)
Parameter5 = Use as daemon (true/false)

Variable Monitor
Parameter1 = Variable name
Parameter2 = Variable value
Parameter3 = comparison criteria (equals, contains, starts with, ends with, "=", "!=", "", "<")
Parameter4 = Task to Run (must be valid taskname in task table)

File Variable
Parameter1 = Variable name
Parameter2 = Filepath to output variable to. (ex: c:\data\test.txt)
Parameter3 = Filing options (insert at start or append at line . etc..)
Parameter4 = Option value corresponding to Filing Option chosen
Parameter5 = Add line separator before inserting variable
Parameter6 = Add line separator after inserting variable

Archive Logs
Parameter1 = archive directory
Parameter2 = append to filename (None, Date or Date/Time)
Parameter3 = place files in subdirectory (No, Date or Date/Time)

Auto Backup
Parameter1 = archive directory
Parameter2 = not used
Parameter3 = place files in subdirectory (No, Date or Date/Time)

Email Logs
Parameter1 = email addresss to receive notification (separate multiple addresses by comma ,)

Chain
Parameter1 = total steps in chain
Parameter2 = All the Chain data in a single line
Data for each step is separated by |@|
Each step has multiple entries separated by |#|
 Entry1 = task type
 Entry2 = taskTitle
 Entry3 = maximum wait time in minutes
 Entry4 = Skip to step exit code choice (true/false)
 Entry5 = exit code comparison criteria (= , != , , <)
 Entry6 = exit code value
 Entry7 = Skip to step (step number or taskTitle)
 Entry8 = rerun step? (true/false)
 Entry9 = rerun exit code comparison criteria (= , != , , <)
 Entry10 = rerun exit code value

 Entry11 = number of times to rerun step
 Entry12 = delay time between reruns
 Entry13 = Always stop chain at this step?

Wakeup
Parameter1 = Mouse Move/Key Stroke/Mouse Click

Shutdown
Parameter1 = Logoff / Reboot / Shutdown / Poweroff
Parameter2 = Win 95/98/ME / Win NT/2000/XP

Open Documents
Parameter1 = Document path or name etc..

MSAccess
Parameter1 = Full path to MSAccess.exe
Parameter2 = Database path
Parameter3 = Option (0 = none/autoexec macro , 1 = run macro, 2 = compact database, 3 = repair
database)
Parameter4 = Macro name
Parameter5 = terminate time in minutes

MSExcel
Parameter1 = Full path to Excel.exe
Parameter2 = Workbook path
Parameter3 = Option 0/1 (0 = none/autoexec macro , 1 = run macro)
Parameter4 = Macro name

MSWord
Parameter1 = Full path to winword.exe
Parameter2 = Database path
Parameter3 = Option 0/1 (0 = none/autoexec macro , 1 = run macro)
Parameter4 = Macro name
Parameter5 = terminate time in minutes

MSPowerpoint
Parameter1 = Full path to ppowerpnt.exe
Parameter2 = Presentation path
Parameter3 = Option 0/1/2 (0 = none/autoexec macro , 1 = print presentation, 2 = run slideshow)
Parameter4 = terminate time in minutes

Back to Index

Modifying a Schedule
1. Get a listing of all tasks using: clm listx
2. Display the desired task 'n' in a format suitable for listing using: clm listx::n
3. Usage: clm "mod::n::Scheduled|*|taskType|*|taskTitle|*|NextRun|*|Frequency|*|Period|*|Hour|*|
Minute|*|Details|*| "
4. NOTE: Schedule list starts at index 0. If you have 10 Scheduled tasks, first Schedule is 0 and last
Schedule is 9

Adding a Schedule
Usage: clm "addx::Scheduled|*|taskType|*|taskTitle|*|NextRun|*|Frequency|*|Period|*|Hour|*|Minute|*|
Details|*| "

taskType & taskTitle are case and space sensitive
Scheduled = true/false (true = scheduled, false = suspended)
taskType = Enter task type exactly. To see taskType list, use: clm ?::type
taskTitle = enter title exactly as it is listed in task table
NextRun = DO NOT MODIFY!!! user interface use only
Frequency = 1-100
Period = Second/Minute/Hour/Day/Week/Month
Hour = 0-23 (only needed when scheduling by Day/Week/Month)
Minute = 0-59 (generally 0)
Details = Monday,Tuesday,Wednesday,Thursday,Friday,Saturday,
Sunday,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,
The run hours 0-23 in the Details are only required when scheduling by Second, Minute or Hour.

You can also Manage your tasks on a remote machine using the user interface itself in conjunction with
this CLM and an ftp client. See the help files on CLM for details.

Back to Index

Remote Install

Some users need to install the software onto remote computers, which may be miles away. This is also
useful for IT administrators who need to install on multiple systems quickly and monitor and control
multiple systems. Others may need the commandline module because their system does not have
display capabilities or only serve as servers.

If you need to install remotely, you can simply copy over the entire main install folder from your Local
system to the Remote system using Ftp (or simple Copy if the remote folder is accesable as a shared
drive to you). Then access the CLM using Telnet (or rlogin, ssh etc..) to start/stop and perform other
scheduler operations. NOTE: when you install remotely, the normal system shortcuts are not created on
the remote systems desktop or other folder since the installation software is not used.

The program does not require any system wide properties to be set. On Windows, nothing is read/
written to the registry or system folders/files etc... On Unix systems, the system classpath or path is not
set or accessed. Hence, only a simple copy or Ftp of the entire main install folder to the Remote System
is required.

Steps for Remote Install:
1) Install a master copy of the software on the same platform as the target remote systems. i.e. if you
want to perform remote installs on Windows systems, Install a master copy on a Windows system.
2) Ftp the entire main install folder to the target remote systems.

Back to Index

Using Ftp to set/view remote data

The easiest way to setup or view data on a remote system is via the user interface itself on your local
system. See the section on managing multiple remote schedulers. All the data files are in the 'inputs'
folder within the main install folder.

Setting (export) data to remote system
1. Telnet to and Shut down the scheduler on the remote system using: clm stop
2. Launch the user interface to create the tasks and schedules on your local system itself.
3. Use an ftp client to transfer all files in the 'inputs' folder from your local machine to the 'inputs' folder
on the remote machine
4. On the remote system, start up the scheduler using: clm start

View (import) data from remote system
1. BACKUP your local scheduler data, using the Backup feature, if the scheduler is also running
on your local system!!!
2. Shut down the scheduler on your local system.
2. Shut down the user interface on your local system.
3. Use an ftp client to transfer all files in the 'inputs' folder from the remote machine to the 'inputs'
folder on your local machine.
4. Start up user interface on your local system. Shut down the scheduler engine so that it does not run
any tasks on your system.
5. Make any changes that you desire. Then you can export the data back to the remote system (see
section above).
6. Restore your local scheduler data, using the Restore feature, if the scheduler is also running tasks on
your local system

Back to Index

Managing remote scheduler(s)

We developed the commandline module on a Windows system and tested it by controlling scheduler
engines running on MacOSX, Linux and Solaris. You can manage remote scheduler(s) either by:
1. Using only the CLM
2. Using the CLM in combination with the user interface & Ftp

Managing Remote Systems using the CLM in combination with Local User Interface & Ftp
The easiest way to setup or view data on a remote system is via the user interface itself on your local
system. To prevent confusion, it helps to understand and organize the data well on your local system to
prevent confusion between the programs data on your local system and the remote system.

1. The main install directory contains an 'inputs' folder
2. All the data files are in this 'inputs' folder. The user interface saves all your updates to data files in
this folder.
3. Create new folders in the folder called 'inputs_remote1' , 'inputs_remote2', 'inputs_remote3' etc.. for
each remote system that you will control. In our case, we used 'inputs_mac', inputs_solaris', and
inputs_linux'.
4. Create a new folder in the main install folder called 'inputs_localhost' for your local system, if you
also run tasks on your local system.
5. If the scheduler is also running tasks on your local system, shut down the scheduler & shut down the
user interface. Then Backup (copy) all the data from the 'inputs' folder to 'inputs_localhost'
6. If you wish to view data from 'remote2', you can either copy the data from 'inputs_remote2' to the
'inputs' folder or by ftp directly FROM the 'inputs' folder on the 'remote2' system.
7. Launch the user interface to create the tasks and schedules for 'remote2'
8. After you have modified the data for 'remote2', you can backup the 'inputs' folder to 'inputs_remote2'
and ftp directly TO the 'inputs' folder on the remote system.
9. Then use the CLM module to STOP and then START the engine on 'remote2'. This will force the
engine to load the new data.
10. If the scheduler is also running tasks on your local system, you can restore your local systems
program data from 'inputs_localhost' to 'inputs'.

Back to Index

Programmatically controlling the scheduler

There are 2 ways to control the Automize scheduler engine from your programs

1) Need to run Automize tasks only. Use the TaskRunner feature from the Automize user interface to
generate the commandline code. Then use this code in your batch files, unix scripts, java exec function,
c/c++ exec/spawn functions etc... to run the tasks. The task will return an exit code that can be used in
your programs for conditional processing. Please see the help file on Exit Codes for details.

2) Full control of engine via commandline module: Adding, modifying, suspending the tasks/
schedules, start/stop the engine, or run tasks, and many more features are available via the commandline
module. You would have to format and send the desired commands via the commandline module using
your program. Please use the commandline module manually to see how it works, before trying to
program through it.

Scheduling a task to run on the first Monday of the month.

Description
User needs to schedule a task (TaskTitle = TaskX) to run on the first Monday of the month, at 6:00 AM.
Automize scheduler currently does not support this type of schedule. However, this schedule can be
obtained by using a Variable monitor task. This solution is possible in version 5.3 and later.

Solution
1) Create an extra Variable monitor task using the following parameters:
Variable Name = $%DATE::dwm%$
Variable value = 1
Comparison Type = equals or =
Task to Run = TaskX (i.e. task that needs to run on first Monday of month)

2) Schedule the Variable monitor task using the following parameters:
Frequency = 1
Type = Week
Date/time = 6:00 AM
Day = Monday

The first Monday of the month should always lie between dates 1-7. The Day in Week of Month (dwm)
= 1, for dates 1-7. i.e. the first Monday of the month should have dwm = 1.

The Variable monitor task will be triggered every Monday at 6:00 AM. It will then check the value of
the Variable 'dwm'. If dwm = 1, it will trigger the task TaskX to run. If dwm > 1, it will not trigger
TaskX to run. Hence the task TaskX will be run only on the first Monday of the month.

Monitoring a website - receive alert when website is down

Description
User needs to constantly monitors his website and gets informed by email to his cell phone when his
website is down. He uses ATT and can receive emails to his cell phone. Emails address is:
phone_num@att.mobile.net. Most cell phone companies now allow users to receive email to their cell
phones. Please see your cell phone manual if this feature is available for your cell phone.

The ping task also keeps statistics. So user can check the uptime statistics for his website from the
Logs / TaskLogs menus. The statistics are updated in a file called 'TaskTitle_statistics".

Solution
1) Create a Ping task (http port = 80) which checks if the website is up
Host = Ip address (not website url)
example: Host = 192.168.0.1, Port = 80

2) Create an Email task which sends email to your cell phone email address. Make sure that you enter a
small message. Most cell phones cannot accept messages greater than ~ 150 characters.

3) Create a chain task.
Step 1 = Ping task
Step 2 = Email task
Set the Chain Exit Code option for the Ping Task as follows:
If Exit Code = 0, Go to step 100 (i.e. stop chain)

4) Schedule this chain to run every 10 minutes.
If the website is up, for the ping task an Exit Code = 0 is returned, and the chain stops (step 100).
If the website is down, an Exit Code = 1 is returned. In this case the Email task is run and you will
recieve an email alert to your cell phone.

Monitoring a website using reference - receive alert when website is down

Date Updated - 06/03/2005

Description
This example is used by us (Hitek Software) to monitor HitekSoftware.com. HitekSoftware.com
website is hosted by Interland.com. Normally, our website is up >99.9% of the time. However, we need
to be informed by email to our cell phones when our website is down. We use AT&T and can receive
emails to our cell phones. Email address is: phone_num@att.mobile.net. Most cell phone companies
now allow users to receive email to their cell phones. Please see your cell phone manual if this feature is
available for your cell phone.

Sometimes the internet connection to our company is down. i.e. our Internet Service Provider is down.
This leads to false alerts being generated by the ping task which monitors our website. Hence, we use a
reference website. Our ping task is only run if the reference website is up.

The ping task also keeps statistics. So we check the uptime statistics for HiekSoftware.com from the
Logs / TaskLogs menus. The statistics are updated in a file called 'TaskTitle_statistics".

Solution
1) Create a Ping task (http port = 80) which checks if the reference website is up
Host = cnn.com, Port = 80

2) Create a Ping task (http port = 80) which checks if our website is up
Host = hiteksoftware.com, Port = 80

3) Create an Email task which sends email to your cell phone email address. Make sure that you enter a
small message. Example: 'hiteksoftware.com is down'. Most cell phones cannot accept email messages
greater than ~ 150 characters.

4) Create a chain task.
Step 1 = Ping task (CNN)
 settings: If Exit Code > 0, Go to step 100 (step 100 => stop chain)
 i.e. stop chain if reference is down => our internet connection is down
Step 2 = Ping task (HitekSoftware)
 settings: If Exit Code = 0, Go to step 100
 i.e. stop chain and do not send alert email since our website is up
Step 3 = Email task (default settings)

4) We schedule this chain to run every 10 minutes.
If the hiteksoftware.com website is up, for the ping task, an Exit Code = 0 is returned, and the chain
stops (goes to step 100).
If the hiteksoftware.com website is down, an Exit Code = 1 is returned for the ping task (step 2). In this

case the Email task is run, and we receive an email alert to our cell phones. If we receive 2-3
consecutive alerts (down for 20 minutes) we contact Interland.com and inform them that our website is
down.

Monitor a log file for alerts. Receives immediate cell phone/pager notification.

Date Updated - 06/03/2005

Description
User is an equipment engineer in a manufacturing setting. He uses Automize to detect alerts/errors in
his production equipments log file.
The format of his log file is as follows:
Aug 05, 2002, 14:45:53 - Alert - low chamber pressure....
Aug 05, 2002, 14:45:57 -

The alerts are always output with the following word 'Alert'. He needs to be notified immediately of
any alerts that occur in the last 1 hour

Solution
You should be using version 5.3 or later

1) Create a TextSearch task (TaskTitle = scanlog)
Directory = directory where log file resides
Filename = log file name
Results file = alert.txt (results file folder = c:\alerts)
Search terms = $%DATE::Qqq dd, YY, hh%$
Surrounding lines to append = 0

This task will look for all lines which contain the current date and time, and have been logged in the
current hour. Only lines which have been logged in the current hour will be output to the file alert.txt.

2) Create an email task (TaskTitle = emailAlert) to send yourself an email to your Cell phone/pager
number. Most cell phone companies in the US provide the ability to receive emails to cell phone.

3) Create a Variable Monitor task (TaskTitle = AlertMonitor)
Variable Name = FILE::LINECONTAINS::ALL::Alert::c:\alerts\alert.txt
Variable Value = Alert
Comparison Criteria = contains
Task To Run = emailPager

If the file alert.txt contains the word 'Alert' then it means that an alert has been generated in the last 1
hour. Then the emailAlert task is run to send an alert to the users cell phone.

4) Create a Chain task as follows:
Step 1 = TextSearch Task (scanLog)
Step 2 = Variable Monitor Task (AlertMonitor)

5) Schedule the Chain to run every 1 hour, at 59 minutes after the hour.

Note that this technique will not detect alerts that are generated in the 59th minute of every hour. The
user configured his equipment so that it is doing its 3 minute required maintenance during the minutes
58-01, so he does not miss any alerts

Monitoring Automize log files for errors / exit codes

Date Updated - 06/03/2005

Description
User needs to have the Automize output log clear to 0 bytes (i.e. delete the log) rather than truncate the
log by half when the maximum size threshold is reached. This is required because the user is using an
enterprise level Alarming software, to monitor the Automize logs for exit codes and alarms, when a
chain fails,. They had a problem with false alarms with their monitoring software. When the log is
truncated, the monitoring software would lose it's pointer and would start looking for alarms from the
beginning of the log. This caused false alarms.

Solution

1) In Automize, use the logs menu and set the maximum log sizes to be extremely large (~1 MB). This
way this limit is never reached, and the automatic truncation to 50% will not occur.

2) Create a delete task which deletes the Automize output log file. The output log is called 'outputLog.
jsd'. It is in the Automize\inputs folder. Other task specific logs are in the Automize\TaskLogs folder.
Delete Task settings:
Title = delete_task
Directory =Automize\inputs
Filename = outputLog.jsd

3) Create a File Monitor task with following settings:
Directory =Automize\inputs
Filename = outputLog.jsd
Task to Run = delete_task
Select Option: Run task if file size greater than 200 KB

4) Schedule the File Monitor task to run at a frequency which ensures that the log file is deleted using
the delete task, rather than automatically truncated to 50% by Automize.

Detect errors in telnet tasks using variable monitor

Date Updated - 06/03/2005

Description
The Telnet tasks can only send the telnet commands and get replies. The telnet task cannot detect if the
command failed or if the batch file generated errors.
User is running a batch file on a Windows server using the telnet task. He needs to detect when errors
are generated in his batch file.

Solution
1) When the Telnet task is run, every response from the Telnet server is stored as a Variable in
Automize. Please see the help section on Task Variables for details. The variable name is of the form:
task_title::ResponseX, where X is the response number and task_title is the telnet task title

2) When the users batch file is run, the Telnet sends back its data reply to Automize. This reply is
stored in the variable task_title::Response4. If an error occurs in the batch file the word 'error' is output
back to Automize and stored in the Response variable..

3) Create a Variable Monitor task, using the following settings:
Variable Name = task_title::Response4
Variable Value = error
Comparison criteria = contains
Task To Run = Email (send alert email when his batch file fails)

4) Create a Chain task with the following steps:
step 1 = Telnet task
step 2 = Variable Monitor task

The telnet task will generate/update the value of the variable task_title::Response4. The variable
monitor task will check if the variable value contains the word 'error'. If it does, it sends an email to the
user.

Save results of a telnet command to local file

Date Updated - 06/03/2005

Description
User needs to logon to telnet server, send a command, and save the results of his command to a local
file

Solution
1) Create a Telnet or Telnet(Adv) task. When the Telnet task is run, every response from the Telnet
server is stored as a Variable in Automize. Please see the help section on Task Variables for details.
The variable name is of the form: task_title::ResponseX, where X is the response number and task_title
is the telnet task title

2) After sending the users telnet command, Automize receives data from the server. This data is stored
in the variable task_title::Response4.

3) Create a File Variable task, using the following settings:
Variable Name = task_title::Response4
Full Filepath = c:\data\telnet_data.txt
Filing Options = Create new file or overwrite exisiting file
Option Value = [leave empty]

4) Create a Chain task with the following steps:
step 1 = Telnet task
step 2 = File Variable task

The telnet task will generate/update the value of the variable task_title::Response4. The File Variable
task will write the results out to telnet_data.txt.

Daemon to monitor directory for changes and run file processing program

Date Updated - 06/03/2005

Description
User is an IT professional in a production environment. He needs to monitor a folder for incoming
files. Whenever a file appears in this folder, he needs to launch a script that will process the files data.

Solution
This solution is available with patch update 5.3_1 or later (release date = 09/15/02)

1) Create the Command / WinCommand task to launch your file processing script (TaskTitle =
fileCrunch)

2) Create a Dir Change task as follows:
Dir to monitor = c:\production\incoming
Task to Run = fileCrunch
Polling interval = 15 seconds
Maximum time allowed for task = 1440 (1440 minutes = 1 day)
Select the Daemon checkbox

3) Schedule this task to run every day (i.e. 1440 minutes) i.e. this task will run continuously 24 hours a
day. If a new file comes into the folder the file processing program is launched via the Command /
WinCommand task.

File Monitor task to monitor directory for total accumulated files

Date Updated - 06/03/2005

Description
User needs to monitor a folder for incoming files. Whenever the total files in the folder exceeds 10, he
needs to launch a script that will process the files files and move them out of the folder.

Solution

1) Create the Command / WinCommand task to launch your file processing script (TaskTitle =
fileCrunch)

2) Create a File Monitor task as follows:
Dir to monitor = c:\production\incoming
Filename = [leave blank]
Task to Run = fileCrunch
Select the option: Run task if total files in directory greater than 10

3) Schedule this task to run every 2 minutes i.e. this task will run continuously 24 hours a day. If more
than 10 files are accumulated into the folder, the file processing program is launched via the Command /
WinCommand task.

Run task if file exists in a directory, else send an email

Date Updated - 06/03/2005

Description
I have a need to send an email, if a file does not exist in a directory. If the file does exist, I need a macro
to run.

Solution

1) Create a File Monitor using the following settings:
Dir = dir_name
File = filename
Select option = Run task if file exists
Task to Run = Your_Macro_task

2) Create a Chain Task with the following settings:
Step 1 = File Monitor task
Options = If Exit Code = -100, Go to step 100
Step 2 = Your_Email_Task

Schedule this Chain task. If the file exists in the folder, then the File Monitor task will run the Macro
Task. In this case, the File Monitor task returns with an exit code = -100. Hence, in the Chain task will
exit (i.e. go to step 100) without sending the email.
If the file does not exist in the folder, then the File Monitor task will not run the Macro Task, and it will
return with an exit code = 0. In this case, step 2 of your chain will run, i.e. the Email task

Dynamically download URLs that are specified in a text file

Date Updated - 06/03/2005

Description
User question: I have an application that must download different URL's. Can your software download
a URL specified in a small text file that changes say every few minutes?

Solution

The text file 'c:\test\url.txt' should specify on the first line, the URL to download. Use Automize system
variable 'FILE::......' to dynamically read in the first line of this file.

Create a Web task using the following settings:
Download URL = $%FILE::LINE::FIRST::c:\test\url.txt%$

Below is the output of such a test:

Sep 16, 2002 2:12:23 PM Web - web

Sep 16, 2002 2:12:23 PM Parsing variables: Input=$%FILE::LINE::FIRST::c:\test\url.txt%$

Sep 16, 2002 2:12:23 PM Finished parsing variables: Result=http://www.cnn.com

Sep 16, 2002 2:12:26 PM
Finished downloading: http://www.cnn.com
Downloaded filename = C:\test\web.htm
Downloaded file size in bytes = 41658

Sep 16, 2002 2:12:27 PM Web - web - Exit Code = 0

Delete files from Ftp server directory, that are older than 30 days

Date Updated - 06/03/2005

Description
User question: How to delete files that are older than 30 days from my Ftp server

Solution

This is only possible using version 5.3_1 and later. The Ftp task has the following option, which is
normally used with the Ftp Put/Get options:
Option = Transfer files if date modified is Older/Newer than X Days/Hours/Minutes.

Select the Ftp Delete option and select the option:
Option = Transfer if Date modified in Older than 30 Days.

This will delete files from the Ftp folder entered, that have not been modified in the last 30 days.

When new files come into folder, send email and attach these files

Date Updated - 06/03/2005

Description
User question: When new files are added to a directory, I would like to automatically create and send an
email with those files as attachments. Also, the files need to be moved out to a backup folder after the
email has been sent.

Solution

You would have to create 5 tasks: File Monitor task, Email task, Copy task, Delete task, Chain task

1) File Monitor task -
Dir to monitor = c:\data_folder
Filename = (leave blank. This will monitor all files)
Task To Run = None
Options = Run task if File exists

2) Email task
In the attachment field, use
[DIR]c:\data_folder[FILE]*
This will attach all files from the c:\data_folder to the email

3) Copy task
Source Dir = c:\data_folder
target Dir = c:\backup_folder
Filename = (leave blank - this will backup all files to the c:\backup_folder)

4) Delete task
Source Dir = c:\data_folder
Filename (leave blank - this will delete all files in the c:\data_folder)

5) Chain task (4 steps)

Step 1 - File monitor task
Select Option : If exit code = 0, Go to Step 100. This makes sure that if no file(s) are found, then the
email, copy and delete tasks are not run. If file(s) are found then exit code = -100, and steps 2-4 in chain
will be run

Step 2 - Email task - default options
Step 3 - Copy task - default options
Step 4 - delete task - default options

6) Schedule the chain task to run at your desired frequency.

Monitor email server: ensure it is processing incoming and outgoing emails

Description
User question: We need to make sure that our email server is processing internal and external emails
correctly at all times. I need the software to send an email out to a remote mail server every five
minutes. The remote mail server is configured to forward the test messages back to a test account in our
internal email server. I need the software to also retrieve email from the test account every ten minutes.
If no messages have been received for more than ten minutes, I need the software to print out an error
document to printer.

Solution

You would have to create 4 tasks: Email Send task, Check Email task, Print task, Chain task

1) Email Send task
Send test email to external server

2) Email Check task
Criteria 1= download messages if date is newer than 10 minutes.
If any email is found matching the specified criteria (i.e. newer than 10 minutes), then the message is
downloaded and an exit code = -100 is set in the task. If no new email within last 5 minutes is found on
the server, than exit code = 0 is set.

3) Print task
Prints error document to the default printer

4) Chain Task
step 1 = email send task
step 2 = check email task, step 2 option: if exit code = -100, go to step 100 (i.e. do not print error
document)
step 3 = print task, (this print task would run, only if step 2 returned with exit code = 0, i.e. no new email
is found in last 10 minutes)

5) Schedule this chain task to run every 5 minutes

Backup a file and receive email notification of success/failure

Date Updated - 06/03/2005

Description
User question: I need to backup (copy) a file, if it exists. I need to send a command successful
confirmation email when the backup is completed successfully and a failure notification when the
backup fails. (user is using a Windows 2000 system)

Solution

1) Run a copy command via a WinCommand task, using the windows NT
command shell (cmd.exe). This way the system exit code is returned correctly to Automize when the
copy fails.

In a WinCommand task:
For the commandline use: cmd.exe /c copy DHR.html DHRCopy.html
For the Working directory use: c:\temp

If the file exists and copy is successful, the WinCommand task will return with exit code = 0. If file does
not exist, exit code = 1.

2) Create a Chain task with 3 steps
step 1 = WinCommand task from above
option = If exit code >0, go to step 3 (failure email)

step 2 = success email task
option = Chain always stops at this step

Step 3 = failure email task

Zip each file in a folder into its own archive

Date Updated - 06/03/2005

Description
User question: I would like to zip each file into its own archive. For example a folder contains 100's of .
eps files each with a unique name of course. Example: B0123400ab.eps
I would like to zip this into its own archive assuming the name of the original file with a .zip extension.
Example: B0123400ab.zip
I then need to have the original file deleted from the source directory.
I then use the ftp task to send them to my customer.

Solution

1) Create an extra ZIP folder

2) Create a FileMonitor task:
task Title = fileMonitor
Dir to Monitor = your DATA folder (which has the .eps files)
Filename = (leave blank)
Criteria = Run task if file size > 0
Task To Run = None

3) Create a Zip task:
taskTitle = zipTask
Source Dir = DATA folder
filename = $%fileMonitor::FileName%$
Dir to place zip archive = ZIP folder
zip filename = $%fileMonitor::FileName%$.zip
Your zip filename will be of the form: B0123400ab.eps.zip .There is no way around this.

4) Create a Delete task:
taskTitle = deleteTask
Source Dir = DATA folder
filename = #$%fileMonitor::FileName%$
(the # is to ensure that an exact filename match is done)

5) Create a Chain:
Step 1 = fileMonitor task
option: if exit code = 0, go to step 100 (i.e. if no files exist, stop chain)
Step 2 = Zip task
option: if exit code > 0, go to step 100 (i.e do not run step 3 if zip fails)
Step 3 = Delete task

6) You can schedule this chain to run every 1 minute or so (probably in a 2-4 hour range at night). Every
time the chain runs, if a file is found, it will be zipped to the ZIP folder and deleted from the DATA
folder.

7) You can then run a ftp task to ftp all files from the ZIP folder to your client. You can also clean up
old files from the ZIP folder using a delete task which will delete all files from the ZIP folder.

Download webpages and append them to master file

Date Updated - 06/03/2005

Description
I have a task that visits a url containing a text file every
10mins and it saves it in a directory with the DATE and TIME format as its name...what I need to do is
setup
a task that will go to that directory say every 60mins, merge only the files with todays DATE and TIME
and
save the results to another file say for example results.txt

Solution

Thanks for evaluating Automize. You would have to insert/append the new dowloaded file to a BASE
file using the File Variable task. Additionally, you would have to download the webpages (textfiles) to a
staging folder which contains the BASE file. After the new file is inserted/appended into the BASE file,
you would have to move the webpage (textfile) to the final storage folder.

To do this, you would have to create the following tasks:
1) your web task
Download folder = [Staging folder] which contains BASE file.

2) A File Monitor task (Title = FileMon). This simply gets the name of the last downloaded file.
Directory = [Staging folder]
Filename = none
Task To Run = NONE
Select Option = Run Task if file exists

The FileMonitor task will now contain the variable $%FileMon::FileName%$ which is the name of the
last downloaded web page.

3) a File Variable task to append file to the BASE file
variable name = $%FILE::LINE::MID::0::10000::full_BASE_file_path%$
File Path = [Staging Folder]\$%FileMon::FileName%$
Select Filing options as needed

4) a Copy task - This moves the file from the staging folder to a final folder. This is required for the
FileMonitor task to work correctly in the next scheduled run.
Option = Move
Source Folder = [Staging Folder]
Target Folder = [Final Folder]
Filename = $%FileMon::FileName%$

5) a chain task (use big blue links icon on front panel).
Step 1 = Web Task
Step 2 = File Monitor task
Step 3 = File Variable task
Step 4 = Copy task

6) Instead of scheduling the web task to run every X minutes, schedule this chain every X minutes.

Ftp Log

The ftp log maintains a list of the files that have been transferred. The exact nature of what is logged,
depends on the options you chose, when you create an Ftp task. If the logging option is selected, the task
will continuously update the log with every file transfer.

Managing Log Size
You can set the maximum Ftp log size. The Ftp log has a default maximum size of 100,000. This
allows about 700-900 rows. The FTP log is automatically trimmed back to 50%, once the maximum log
size is exceeded.

Saving Log to Disk

Enter a valid directory on your system, in the directory text box. Hit the save button . The file will
be saved to the selected directory, with the filename 'FtpLog'.

Back to Index

TaskTypes

The taskType field is case sensitive as well as space sensitive.
For Version 6.x, the following are correct taskTypes entries:

Command
Windows Command
Alarm
Message
Wakeup
Open Documents
Shutdown
MSAccess
MSExcel
MSWord
MSPowerpoint
Macro
Copy Files
Zip Directories
Delete Files
Print Files
Text Search
Ping
Ftp
Ftp Monitor
Ftp Commands
Send Email
Bulk Email
Check Email
Web
Url Monitor
Database SQL
Maintenance
Archive Logs
Auto Backup
Email Logs
Chain
Dir Monitor
Dir Change

Variable Monitor
File Monitor
File Variable
Telnet
Telnet(Adv)

	Local Disk
	Hitek Software Help File Version 6
	Contents
	Introduction
	Purchase Information
	Getting Started
	Basics
	Tasks
	Variables
	Tutorials and Tips
	NT Service Module
	Commandline Module
	Case Studies
	Reliability and Testing
	Using Help
	Front Panel Description
	Task Table
	Schedule Table
	Scheduling Tasks
	Exit Codes
	Log Files
	Append To Filename
	Filename Filter
	Scheduler Settings
	Unix Service
	Archive Logs Task
	Auto Backup Task
	Bulk Email
	Command Task
	Chain Task
	Copy Files Task
	Check Email Task
	Database SQL task
	Direrctory Change Task
	Delete Files Task
	Database Test Utility
	Directory Monitor
	email task
	Email Logs Task
	File Monitor task
	Ftp task
	Ftp Commands
	Ftp Monitor task
	File Variable task
	Log file monitor task
	Maintanance Restart Task
	Ping Task
	Print Files Task
	Synchronize Folders Task
	Text Search
	Telnet Task
	Telnet(Adv) task
	Unzip Archive Task
	Url Monitor task
	Variable Monitor Task
	Web Downloads Task
	Windows Command Task
	Zip Directories
	Task Variables
	System Variables
	User Defined Variables
	How To's
	Windows specific tutorials
	commandline module Introduction
	Using the CommandLine Module (CLM)
	command reference page
	Adding or modifying a Task
	Parameter list
	Adding or modifying a Schedule
	Remote Install
	Setting or viewing remote data
	Managing multiple remote schedulers
	Programmatically controlling the scheduler
	Scheduling a task to run on the first Monday of the month.
	Monitoring a website - receive alert when website is down
	Monitoring a website using reference - receive alert when website is down
	Monitor a log file for alerts. Receives immediate cell phone/pager notification.
	Monitoring Automize log files for errors / exit codes
	Detect errors in telnet tasks using variable monitor
	Save results of a telnet command to local file
	Daemon to monitor directory for changes and run file processing program
	File Monitor task to monitor directory for total accumulated files
	Run task if file exists in a directory, else send an email
	Dynamically download URLs that are specified in a text file
	Delete files from Ftp server directory, that are older than 30 days
	When new files come into folder, send email and attach these files
	Monitor email server: ensure it is processing incoming and outgoing emails
	Backup a file and receive email notification of success/failure
	Zip each file in a folder into its own archive
	Download webpages and append them to master file
	Ftp Log
	Adding or modifying a Task

